To emulate the bash process substitution:
#!/usr/bin/env python
from subprocess import check_call
check_call('someprogram <(someprocess) <(anotherprocess)',
shell=True, executable='/bin/bash')
In Python, you could use named pipes:
#!/usr/bin/env python
from subprocess import Popen
with named_pipes(n=2) as paths:
someprogram = Popen(['someprogram'] + paths)
processes = []
for path, command in zip(paths, ['someprocess', 'anotherprocess']):
with open(path, 'wb', 0) as pipe:
processes.append(Popen(command, stdout=pipe, close_fds=True))
for p in [someprogram] + processes:
p.wait()
where named_pipes(n)
is:
import os
import shutil
import tempfile
from contextlib import contextmanager
@contextmanager
def named_pipes(n=1):
dirname = tempfile.mkdtemp()
try:
paths = [os.path.join(dirname, 'named_pipe' + str(i)) for i in range(n)]
for path in paths:
os.mkfifo(path)
yield paths
finally:
shutil.rmtree(dirname)
Another and more preferable way (no need to create a named entry on disk) to implement the bash process substitution is to use /dev/fd/N
filenames (if they are available) as suggested by @Dunes. On FreeBSD, fdescfs(5)
(/dev/fd/#
) creates entries for all file descriptors opened by the process. To test availability, run:
$ test -r /dev/fd/3 3</dev/null && echo /dev/fd is available
If it fails; try to symlink /dev/fd
to proc(5)
as it is done on some Linuxes:
$ ln -s /proc/self/fd /dev/fd
Here's /dev/fd
-based implementation of someprogram <(someprocess) <(anotherprocess)
bash command:
#!/usr/bin/env python3
from contextlib import ExitStack
from subprocess import CalledProcessError, Popen, PIPE
def kill(process):
if process.poll() is None: # still running
process.kill()
with ExitStack() as stack: # for proper cleanup
processes = []
for command in [['someprocess'], ['anotherprocess']]: # start child processes
processes.append(stack.enter_context(Popen(command, stdout=PIPE)))
stack.callback(kill, processes[-1]) # kill on someprogram exit
fds = [p.stdout.fileno() for p in processes]
someprogram = stack.enter_context(
Popen(['someprogram'] + ['/dev/fd/%d' % fd for fd in fds], pass_fds=fds))
for p in processes: # close pipes in the parent
p.stdout.close()
# exit stack: wait for processes
if someprogram.returncode != 0: # errors shouldn't go unnoticed
raise CalledProcessError(someprogram.returncode, someprogram.args)
Note: on my Ubuntu machine, the subprocess
code works only in Python 3.4+, despite pass_fds
being available since Python 3.2.