Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
155 views
in Technique[技术] by (71.8m points)

python - How to detect lines in OpenCV?

I am trying to detect lines in parking as shown below.

Empty parking lot

What I hope to get is the clear lines and (x,y) position in the crossed line. However, the result is not very promising.

Parking lot with Hough Lines drawn

I guess it is due to two main reasons:

  1. Some lines are very broken or missing. Even human eyes can clearly identify them. Even though HoughLine can help to connect some missing lines, since HoughLine sometimes would connect unnecessary lines together, I 'd rather to do it manually.

  2. There are some repeated lines.

The general pipeline for the work is shown as below:

1. Select some specific colors (white or yellow)

import cv2
import numpy as np
import matplotlib
from matplotlib.pyplot import imshow
from matplotlib import pyplot as plt

# white color mask
img = cv2.imread(filein)
#converted = convert_hls(img)
image = cv2.cvtColor(img,cv2.COLOR_BGR2HLS)
lower = np.uint8([0, 200, 0])
upper = np.uint8([255, 255, 255])
white_mask = cv2.inRange(image, lower, upper)
# yellow color mask
lower = np.uint8([10, 0,   100])
upper = np.uint8([40, 255, 255])
yellow_mask = cv2.inRange(image, lower, upper)
# combine the mask
mask = cv2.bitwise_or(white_mask, yellow_mask)
result = img.copy()
cv2.imshow("mask",mask) 

Binary image

2. Repeat the dilation and erosion until the image can not be changed (reference )

height,width = mask.shape
skel = np.zeros([height,width],dtype=np.uint8)      #[height,width,3]
kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3,3))
temp_nonzero = np.count_nonzero(mask)
while(np.count_nonzero(mask) != 0 ):
    eroded = cv2.erode(mask,kernel)
    cv2.imshow("eroded",eroded)   
    temp = cv2.dilate(eroded,kernel)
    cv2.imshow("dilate",temp)
    temp = cv2.subtract(mask,temp)
    skel = cv2.bitwise_or(skel,temp)
    mask = eroded.copy()
 
cv2.imshow("skel",skel)
#cv2.waitKey(0)

After the erosion and dialation

3. Apply the canny to filter the lines and use HoughLinesP to get the lines

edges = cv2.Canny(skel, 50, 150)
cv2.imshow("edges",edges)
lines = cv2.HoughLinesP(edges,1,np.pi/180,40,minLineLength=30,maxLineGap=30)
i = 0
for x1,y1,x2,y2 in lines[0]:
    i+=1
    cv2.line(result,(x1,y1),(x2,y2),(255,0,0),1)
print i

cv2.imshow("res",result)
cv2.waitKey(0)

After Canny

I wonder why after the first step of selecting certain color, the lines are broken and with noises. I would think in this step we should do something to make the broken line a complete, less noisy line. And then try to apply something to do the Canny and Hough lines. Any ideas?

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Here is my pipeline, maybe it can give you some help.

First, get the gray image and process GaussianBlur.

img = cv2.imread('src.png')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

kernel_size = 5
blur_gray = cv2.GaussianBlur(gray,(kernel_size, kernel_size),0)

Second, process edge detection use Canny.

low_threshold = 50
high_threshold = 150
edges = cv2.Canny(blur_gray, low_threshold, high_threshold)

Then, use HoughLinesP to get the lines. You can adjust the parameters for better performance.

rho = 1  # distance resolution in pixels of the Hough grid
theta = np.pi / 180  # angular resolution in radians of the Hough grid
threshold = 15  # minimum number of votes (intersections in Hough grid cell)
min_line_length = 50  # minimum number of pixels making up a line
max_line_gap = 20  # maximum gap in pixels between connectable line segments
line_image = np.copy(img) * 0  # creating a blank to draw lines on

# Run Hough on edge detected image
# Output "lines" is an array containing endpoints of detected line segments
lines = cv2.HoughLinesP(edges, rho, theta, threshold, np.array([]),
                    min_line_length, max_line_gap)

for line in lines:
    for x1,y1,x2,y2 in line:
    cv2.line(line_image,(x1,y1),(x2,y2),(255,0,0),5)

Finally, draw the lines on your srcImage.

# Draw the lines on the  image
lines_edges = cv2.addWeighted(img, 0.8, line_image, 1, 0)

Here is my final performance.

Final Image:

enter image description here


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...