Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
1.5k views
in Technique[技术] by (71.8m points)

scipy - How to calculate the inverse of the normal cumulative distribution function in python?

How do I calculate the inverse of the cumulative distribution function (CDF) of the normal distribution in Python?

Which library should I use? Possibly scipy?

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

NORMSINV (mentioned in a comment) is the inverse of the CDF of the standard normal distribution. Using scipy, you can compute this with the ppf method of the scipy.stats.norm object. The acronym ppf stands for percent point function, which is another name for the quantile function.

In [20]: from scipy.stats import norm

In [21]: norm.ppf(0.95)
Out[21]: 1.6448536269514722

Check that it is the inverse of the CDF:

In [34]: norm.cdf(norm.ppf(0.95))
Out[34]: 0.94999999999999996

By default, norm.ppf uses mean=0 and stddev=1, which is the "standard" normal distribution. You can use a different mean and standard deviation by specifying the loc and scale arguments, respectively.

In [35]: norm.ppf(0.95, loc=10, scale=2)
Out[35]: 13.289707253902945

If you look at the source code for scipy.stats.norm, you'll find that the ppf method ultimately calls scipy.special.ndtri. So to compute the inverse of the CDF of the standard normal distribution, you could use that function directly:

In [43]: from scipy.special import ndtri

In [44]: ndtri(0.95)
Out[44]: 1.6448536269514722

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

2.1m questions

2.1m answers

60 comments

57.0k users

...