Yes.
Just change your input shape to shape=(n_channels, None, None).
Where n_channels is the number of channels in your input image.
I'm using Theano backend though, so if you are using tensorflow you might have to change it to (None,None,n_channels)
You should use:
input_shape=(1, None, None)
None in a shape denotes a variable dimension. Note that not all layers
will work with such variable dimensions, since some layers require
shape information (such as Flatten).
https://github.com/fchollet/keras/issues/1920
For example, using keras's functional API your input layer would be:
For a RGB dataset
inp = Input(shape=(3,None,None))
For a Gray dataset
inp = Input(shape=(1,None,None))
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…