Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
453 views
in Technique[技术] by (71.8m points)

machine learning - Can Keras deal with input images with different size?

Can the Keras deal with input images with different size? For example, in the fully convolutional neural network, the input images can have any size. However, we need to specify the input shape when we create a network by Keras. Therefore, how can we use Keras to deal with different input size without resizing the input images to the same size? Thanks for any help.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Yes. Just change your input shape to shape=(n_channels, None, None). Where n_channels is the number of channels in your input image.

I'm using Theano backend though, so if you are using tensorflow you might have to change it to (None,None,n_channels)

You should use:

input_shape=(1, None, None)

None in a shape denotes a variable dimension. Note that not all layers will work with such variable dimensions, since some layers require shape information (such as Flatten). https://github.com/fchollet/keras/issues/1920

For example, using keras's functional API your input layer would be:

For a RGB dataset

inp = Input(shape=(3,None,None))

For a Gray dataset

inp = Input(shape=(1,None,None))

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...