Instead of answering each individual question, let me illustrate how to use the HMM toolbox with an example -- the weather example which is usually used when introducing hidden markov models.
Basically the states of the model are the three possible types of weather: sunny, rainy and foggy. At any given day, we assume the weather can be only one of these values. Thus the set of HMM states are:
S = {sunny, rainy, foggy}
However in this example, we can't observe the weather directly (apparently we are locked in the basement!). Instead the only evidence we have is whether the person who checks on you every day is carrying an umbrella or not. In HMM terminology, these are the discrete observations:
x = {umbrella, no umbrella}
The HMM model is characterized by three things:
- The prior probabilities: vector of probabilities of being in the first state of a sequence.
- The transition prob: matrix describing the probabilities of going from one state of weather to another.
- The emission prob: matrix describing the probabilities of observing an output (umbrella or not) given a state (weather).
Next we are either given the these probabilities, or we have to learn them from a training set. Once that's done, we can do reasoning like computing likelihood of an observation sequence with respect to an HMM model (or a bunch of models, and pick the most likely one)...
1) known model parameters
Here is a sample code that shows how to fill existing probabilities to build the model:
Q = 3; %# number of states (sun,rain,fog)
O = 2; %# number of discrete observations (umbrella, no umbrella)
%# prior probabilities
prior = [1 0 0];
%# state transition matrix (1: sun, 2: rain, 3:fog)
A = [0.8 0.05 0.15; 0.2 0.6 0.2; 0.2 0.3 0.5];
%# observation emission matrix (1: umbrella, 2: no umbrella)
B = [0.1 0.9; 0.8 0.2; 0.3 0.7];
Then we can sample a bunch of sequences from this model:
num = 20; %# 20 sequences
T = 10; %# each of length 10 (days)
[seqs,states] = dhmm_sample(prior, A, B, num, T);
for example, the 5th example was:
>> seqs(5,:) %# observation sequence
ans =
2 2 1 2 1 1 1 2 2 2
>> states(5,:) %# hidden states sequence
ans =
1 1 1 3 2 2 2 1 1 1
we can evaluate the log-likelihood of the sequence:
dhmm_logprob(seqs(5,:), prior, A, B)
dhmm_logprob_path(prior, A, B, states(5,:))
or compute the Viterbi path (most probable state sequence):
vPath = viterbi_path(prior, A, multinomial_prob(seqs(5,:),B))
2) unknown model parameters
Training is performed using the EM algorithm, and is best done with a set of observation sequences.
Continuing on the same example, we can use the generated data above to train a new model and compare it to the original:
%# we start with a randomly initialized model
prior_hat = normalise(rand(Q,1));
A_hat = mk_stochastic(rand(Q,Q));
B_hat = mk_stochastic(rand(Q,O));
%# learn from data by performing many iterations of EM
[LL,prior_hat,A_hat,B_hat] = dhmm_em(seqs, prior_hat,A_hat,B_hat, 'max_iter',50);
%# plot learning curve
plot(LL), xlabel('iterations'), ylabel('log likelihood'), grid on
Keep in mind that the states order don't have to match. That's why we need to permute the states before comparing the two models. In this example, the trained model looks close to the original one:
>> p = [2 3 1]; %# states permutation
>> prior, prior_hat(p)
prior =
1 0 0
ans =
0.97401
7.5499e-005
0.02591
>> A, A_hat(p,p)
A =
0.8 0.05 0.15
0.2 0.6 0.2
0.2 0.3 0.5
ans =
0.75967 0.05898 0.18135
0.037482 0.77118 0.19134
0.22003 0.53381 0.24616
>> B, B_hat(p,[1 2])
B =
0.1 0.9
0.8 0.2
0.3 0.7
ans =
0.11237 0.88763
0.72839 0.27161
0.25889 0.74111
There are more things you can do with hidden markov models such as classification or pattern recognition. You would have different sets of obervation sequences belonging to different classes. You start by training a model for each set. Then given a new observation sequence, you could classify it by computing its likelihood with respect to each model, and predict the model with the highest log-likelihood.
argmax[ log P(X|model_i) ] over all model_i