I am trying to feed a huge sparse matrix to Keras model. As the dataset doesn`t fit into RAM, the way around is to train the model on a data generated batch-by-batch by a generator.
To test this approach and make sure my solution works fine, I slightly modified a Kera`s simple MLP on the Reuters newswire topic classification task. So, the idea is to compare original and edited models. I just convert numpy.ndarray into scipy.sparse.csr.csr_matrix and feed it to the model.
But my model crashes at some point and I need a hand to figure out a reason.
Here is the original model and my additions below
from __future__ import print_function
import numpy as np
np.random.seed(1337) # for reproducibility
from keras.datasets import reuters
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.utils import np_utils
from keras.preprocessing.text import Tokenizer
max_words = 1000
batch_size = 32
nb_epoch = 5
print('Loading data...')
(X_train, y_train), (X_test, y_test) = reuters.load_data(nb_words=max_words, test_split=0.2)
print(len(X_train), 'train sequences')
print(len(X_test), 'test sequences')
nb_classes = np.max(y_train)+1
print(nb_classes, 'classes')
print('Vectorizing sequence data...')
tokenizer = Tokenizer(nb_words=max_words)
X_train = tokenizer.sequences_to_matrix(X_train, mode='binary')
X_test = tokenizer.sequences_to_matrix(X_test, mode='binary')
print('X_train shape:', X_train.shape)
print('X_test shape:', X_test.shape)
print('Convert class vector to binary class matrix (for use with categorical_crossentropy)')
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
print('Y_train shape:', Y_train.shape)
print('Y_test shape:', Y_test.shape)
print('Building model...')
model = Sequential()
model.add(Dense(512, input_shape=(max_words,)))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
history = model.fit(X_train, Y_train,
nb_epoch=nb_epoch, batch_size=batch_size,
verbose=1)#, validation_split=0.1)
#score = model.evaluate(X_test, Y_test,
# batch_size=batch_size, verbose=1)
print('Test score:', score[0])
print('Test accuracy:', score[1])
It outputs:
Loading data...
8982 train sequences
2246 test sequences
46 classes
Vectorizing sequence data...
X_train shape: (8982, 1000)
X_test shape: (2246, 1000)
Convert class vector to binary class matrix (for use with categorical_crossentropy)
Y_train shape: (8982, 46)
Y_test shape: (2246, 46)
Building model...
Epoch 1/5
8982/8982 [==============================] - 5s - loss: 1.3932 - acc: 0.6906
Epoch 2/5
8982/8982 [==============================] - 4s - loss: 0.7522 - acc: 0.8234
Epoch 3/5
8982/8982 [==============================] - 5s - loss: 0.5407 - acc: 0.8681
Epoch 4/5
8982/8982 [==============================] - 5s - loss: 0.4160 - acc: 0.8980
Epoch 5/5
8982/8982 [==============================] - 5s - loss: 0.3338 - acc: 0.9136
Test score: 1.01453569163
Test accuracy: 0.797417631398
Finally, here is my part
X_train_sparse = sparse.csr_matrix(X_train)
def batch_generator(X, y, batch_size):
n_batches_for_epoch = X.shape[0]//batch_size
for i in range(n_batches_for_epoch):
index_batch = range(X.shape[0])[batch_size*i:batch_size*(i+1)]
X_batch = X[index_batch,:].todense()
y_batch = y[index_batch,:]
yield(np.array(X_batch),y_batch)
model.fit_generator(generator=batch_generator(X_train_sparse, Y_train, batch_size),
nb_epoch=nb_epoch,
samples_per_epoch=X_train_sparse.shape[0])
The crash:
Exception Traceback (most recent call last)
<ipython-input-120-6722a4f77425> in <module>()
1 model.fit_generator(generator=batch_generator(X_trainSparse, Y_train, batch_size),
2 nb_epoch=nb_epoch,
----> 3 samples_per_epoch=X_trainSparse.shape[0])
/home/kk/miniconda2/envs/tensorflow/lib/python2.7/site-packages/keras/models.pyc in fit_generator(self, generator, samples_per_epoch, nb_epoch, verbose, callbacks, validation_data, nb_val_samples, class_weight, max_q_size, **kwargs)
648 nb_val_samples=nb_val_samples,
649 class_weight=class_weight,
--> 650 max_q_size=max_q_size)
651
652 def evaluate_generator(self, generator, val_samples, max_q_size=10, **kwargs):
/home/kk/miniconda2/envs/tensorflow/lib/python2.7/site-packages/keras/engine/training.pyc in fit_generator(self, generator, samples_per_epoch, nb_epoch, verbose, callbacks, validation_data, nb_val_samples, class_weight, max_q_size)
1356 raise Exception('output of generator should be a tuple '
1357 '(x, y, sample_weight) '
-> 1358 'or (x, y). Found: ' + str(generator_output))
1359 if len(generator_output) == 2:
1360 x, y = generator_output
Exception: output of generator should be a tuple (x, y, sample_weight) or (x, y). Found: None
I believe the problem is due to wrong setup of samples_per_epoch. I`d trully appreciate if someone could comment on this.
See Question&Answers more detail:
os