Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
431 views
in Technique[技术] by (71.8m points)

machine learning - gradient descent seems to fail

I implemented a gradient descent algorithm to minimize a cost function in order to gain a hypothesis for determining whether an image has a good quality. I did that in Octave. The idea is somehow based on the algorithm from the machine learning class by Andrew Ng

Therefore I have 880 values "y" that contains values from 0.5 to ~12. And I have 880 values from 50 to 300 in "X" that should predict the image's quality.

Sadly the algorithm seems to fail, after some iterations the value for theta is so small, that theta0 and theta1 become "NaN". And my linear regression curve has strange values...

here is the code for the gradient descent algorithm: (theta = zeros(2, 1);, alpha= 0.01, iterations=1500)

function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)

m = length(y); % number of training examples
J_history = zeros(num_iters, 1);

for iter = 1:num_iters


    tmp_j1=0;
for i=1:m, 
    tmp_j1 = tmp_j1+ ((theta (1,1) + theta (2,1)*X(i,2)) - y(i));
end

    tmp_j2=0;
for i=1:m, 
    tmp_j2 = tmp_j2+ (((theta (1,1) + theta (2,1)*X(i,2)) - y(i)) *X(i,2)); 
end

    tmp1= theta(1,1) - (alpha *  ((1/m) * tmp_j1))  
    tmp2= theta(2,1) - (alpha *  ((1/m) * tmp_j2))  

    theta(1,1)=tmp1
    theta(2,1)=tmp2

    % ============================================================

    % Save the cost J in every iteration    
    J_history(iter) = computeCost(X, y, theta);
end
end

And here is the computation for the costfunction:

function J = computeCost(X, y, theta)   %

m = length(y); % number of training examples
J = 0;
tmp=0;
for i=1:m, 
    tmp = tmp+ (theta (1,1) + theta (2,1)*X(i,2) - y(i))^2; %differenzberechnung
end
J= (1/(2*m)) * tmp
end
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

If you are wondering how the seemingly complex looking for loop can be vectorized and cramped into a single one line expression, then please read on. The vectorized form is:

theta = theta - (alpha/m) * (X' * (X * theta - y))

Given below is a detailed explanation for how we arrive at this vectorized expression using gradient descent algorithm:

This is the gradient descent algorithm to fine tune the value of θ: enter image description here

Assume that the following values of X, y and θ are given:

  • m = number of training examples
  • n = number of features + 1

enter image description here

Here

  • m = 5 (training examples)
  • n = 4 (features+1)
  • X = m x n matrix
  • y = m x 1 vector matrix
  • θ = n x 1 vector matrix
  • xi is the ith training example
  • xj is the jth feature in a given training example

Further,

  • h(x) = ([X] * [θ]) (m x 1 matrix of predicted values for our training set)
  • h(x)-y = ([X] * [θ] - [y]) (m x 1 matrix of Errors in our predictions)

whole objective of machine learning is to minimize Errors in predictions. Based on the above corollary, our Errors matrix is m x 1 vector matrix as follows:

enter image description here

To calculate new value of θj, we have to get a summation of all errors (m rows) multiplied by jth feature value of the training set X. That is, take all the values in E, individually multiply them with jth feature of the corresponding training example, and add them all together. This will help us in getting the new (and hopefully better) value of θj. Repeat this process for all j or the number of features. In matrix form, this can be written as:

enter image description here

This can be simplified as: enter image description here

  • [E]' x [X] will give us a row vector matrix, since E' is 1 x m matrix and X is m x n matrix. But we are interested in getting a column matrix, hence we transpose the resultant matrix.

More succinctly, it can be written as: enter image description here

Since (A * B)' = (B' * A'), and A'' = A, we can also write the above as

enter image description here

This is the original expression we started out with:

theta = theta - (alpha/m) * (X' * (X * theta - y))

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...