• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Java BasicLineIterator类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Java中org.deeplearning4j.text.sentenceiterator.BasicLineIterator的典型用法代码示例。如果您正苦于以下问题:Java BasicLineIterator类的具体用法?Java BasicLineIterator怎么用?Java BasicLineIterator使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



BasicLineIterator类属于org.deeplearning4j.text.sentenceiterator包,在下文中一共展示了BasicLineIterator类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。

示例1: testFindNamesFromText

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator; //导入依赖的package包/类
@Ignore
@Test
public void testFindNamesFromText() throws IOException {
    SentenceIterator iter = new BasicLineIterator("src/test/resources/chineseName.txt");

    log.info("load is right!");
    TokenizerFactory tokenizerFactory = new ChineseTokenizerFactory();
    //tokenizerFactory.setTokenPreProcessor(new ChineseTokenizer());

    //Generates a word-vector from the dataset stored in resources folder
    Word2Vec vec = new Word2Vec.Builder().minWordFrequency(2).iterations(5).layerSize(100).seed(42)
                    .learningRate(0.1).windowSize(20).iterate(iter).tokenizerFactory(tokenizerFactory).build();
    vec.fit();
    WordVectorSerializer.writeWordVectors(vec, new File("src/test/resources/chineseNameWordVector.txt"));

    //trains a model that can find out all names from news(Suffix txt),It uses word vector generated
    // WordVectors wordVectors;

    //test model,Whether the model find out name from unknow text;

}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:22,代码来源:ChineseTokenizerTest.java


示例2: testWord2VecPlot

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator; //导入依赖的package包/类
@Test
public void testWord2VecPlot() throws Exception {
    File inputFile = new ClassPathResource("/big/raw_sentences.txt").getFile();
    SentenceIterator iter = new BasicLineIterator(inputFile.getAbsolutePath());

    TokenizerFactory t = new DefaultTokenizerFactory();
    t.setTokenPreProcessor(new CommonPreprocessor());

    Word2Vec vec = new Word2Vec.Builder().minWordFrequency(5).iterations(2).batchSize(1000).learningRate(0.025)
                    .layerSize(100).seed(42).sampling(0).negativeSample(0).windowSize(5)
                    .modelUtils(new BasicModelUtils<VocabWord>()).useAdaGrad(false).iterate(iter).workers(10)
                    .tokenizerFactory(t).build();

    vec.fit();

    //        UiConnectionInfo connectionInfo = UiServer.getInstance().getConnectionInfo();

    //        vec.getLookupTable().plotVocab(100, connectionInfo);

    Thread.sleep(10000000000L);
    fail("Not implemented");
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:23,代码来源:ManualTests.java


示例3: testWord2VecMultiEpoch

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator; //导入依赖的package包/类
@Test
public void testWord2VecMultiEpoch() throws Exception {
    SentenceIterator iter = new BasicLineIterator(inputFile.getAbsolutePath());

    TokenizerFactory t = new DefaultTokenizerFactory();
    t.setTokenPreProcessor(new CommonPreprocessor());

    Word2Vec vec = new Word2Vec.Builder().minWordFrequency(1).iterations(5).learningRate(0.025).layerSize(150)
                    .seed(42).sampling(0).negativeSample(0).useHierarchicSoftmax(true).windowSize(5).epochs(3)
                    .modelUtils(new BasicModelUtils<VocabWord>()).useAdaGrad(false).iterate(iter).workers(8)
                    .tokenizerFactory(t).elementsLearningAlgorithm(new CBOW<VocabWord>()).build();

    vec.fit();

    Collection<String> lst = vec.wordsNearest("day", 10);
    log.info(Arrays.toString(lst.toArray()));

    //   assertEquals(10, lst.size());

    double sim = vec.similarity("day", "night");
    log.info("Day/night similarity: " + sim);

    assertTrue(lst.contains("week"));
    assertTrue(lst.contains("night"));
    assertTrue(lst.contains("year"));
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:27,代码来源:Word2VecTests.java


示例4: testWord2VecGoogleModelUptraining

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator; //导入依赖的package包/类
@Ignore
@Test
public void testWord2VecGoogleModelUptraining() throws Exception {
    long time1 = System.currentTimeMillis();
    Word2Vec vec = WordVectorSerializer.readWord2VecModel(
                    new File("C:\\Users\\raver\\Downloads\\GoogleNews-vectors-negative300.bin.gz"), false);
    long time2 = System.currentTimeMillis();
    log.info("Model loaded in {} msec", time2 - time1);
    SentenceIterator iter = new BasicLineIterator(inputFile.getAbsolutePath());
    // Split on white spaces in the line to get words
    TokenizerFactory t = new DefaultTokenizerFactory();
    t.setTokenPreProcessor(new CommonPreprocessor());

    vec.setTokenizerFactory(t);
    vec.setSentenceIterator(iter);
    vec.getConfiguration().setUseHierarchicSoftmax(false);
    vec.getConfiguration().setNegative(5.0);
    vec.setElementsLearningAlgorithm(new CBOW<VocabWord>());

    vec.fit();
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:22,代码来源:Word2VecTests.java


示例5: testVocab

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator; //导入依赖的package包/类
@Test
public void testVocab() throws Exception {
    File inputFile = new ClassPathResource("big/raw_sentences.txt").getFile();
    SentenceIterator iter = new BasicLineIterator(inputFile);

    Set<String> set = new HashSet<>();
    int lines = 0;
    int cnt = 0;
    while (iter.hasNext()) {
        Tokenizer tok = t.create(iter.nextSentence());
        for (String token : tok.getTokens()) {
            if (token == null || token.isEmpty() || token.trim().isEmpty())
                continue;
            cnt++;

            if (!set.contains(token))
                set.add(token);
        }

        lines++;
    }

    log.info("Total number of tokens: [" + cnt + "], lines: [" + lines + "], set size: [" + set.size() + "]");
    log.info("Set:\n" + set);
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:26,代码来源:VocabConstructorTest.java


示例6: hasNext

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator; //导入依赖的package包/类
@Test
public void hasNext() throws Exception {
    SentenceIterator iterator = new BasicLineIterator(new ClassPathResource("/big/raw_sentences.txt").getFile());

    SentenceTransformer transformer = new SentenceTransformer.Builder().iterator(iterator).allowMultithreading(true)
                    .tokenizerFactory(factory).build();

    Iterator<Sequence<VocabWord>> iter = transformer.iterator();
    int cnt = 0;
    Sequence<VocabWord> sequence = null;
    while (iter.hasNext()) {
        sequence = iter.next();
        assertNotEquals("Failed on [" + cnt + "] iteration", null, sequence);
        assertNotEquals("Failed on [" + cnt + "] iteration", 0, sequence.size());
        cnt++;
    }

    //   log.info("Last element: {}", sequence.asLabels());

    assertEquals(97162, cnt);
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:22,代码来源:ParallelTransformerIteratorTest.java


示例7: nextDocument

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator; //导入依赖的package包/类
@Test
public void nextDocument() throws Exception {
    SentenceIterator sentence = new BasicLineIterator(new ClassPathResource("/big/raw_sentences.txt").getFile());
    BasicLabelAwareIterator backed = new BasicLabelAwareIterator.Builder(sentence).build();

    int cnt = 0;
    while (backed.hasNextDocument()) {
        backed.nextDocument();
        cnt++;
    }
    assertEquals(97162, cnt);

    backed.reset();

    AsyncLabelAwareIterator iterator = new AsyncLabelAwareIterator(backed, 64);
    cnt = 0;
    while (iterator.hasNext()) {
        iterator.next();
        cnt++;

        if (cnt == 10)
            iterator.reset();
    }
    assertEquals(97172, cnt);
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:26,代码来源:AsyncLabelAwareIteratorTest.java


示例8: testHasNextDocument1

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator; //导入依赖的package包/类
@Test
public void testHasNextDocument1() throws Exception {

    File inputFile = new ClassPathResource("/big/raw_sentences.txt").getFile();
    SentenceIterator iter = new BasicLineIterator(inputFile.getAbsolutePath());

    BasicLabelAwareIterator iterator = new BasicLabelAwareIterator.Builder(iter).setLabelTemplate("DOCZ_").build();

    int cnt = 0;
    while (iterator.hasNextDocument()) {
        iterator.nextDocument();
        cnt++;
    }

    assertEquals(97162, cnt);

    LabelsSource generator = iterator.getLabelsSource();

    assertEquals(97162, generator.getLabels().size());
    assertEquals("DOCZ_0", generator.getLabels().get(0));
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:22,代码来源:BasicLabelAwareIteratorTest.java


示例9: trainParagraghVecModel

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator; //导入依赖的package包/类
public void trainParagraghVecModel(String locationToSave) throws FileNotFoundException {
    ClassPathResource resource = new ClassPathResource("/paragraphVectors/paragraphVectorTraining.txt");
    File file = resource.getFile();
    SentenceIterator iter = new BasicLineIterator(file);
    AbstractCache<VocabWord> cache = new AbstractCache<VocabWord>();
    TokenizerFactory t = new DefaultTokenizerFactory();
    t.setTokenPreProcessor(new CommonPreprocessor());
    /*
         if you don't have LabelAwareIterator handy, you can use synchronized labels generator
          it will be used to label each document/sequence/line with it's own label.
          But if you have LabelAwareIterator ready, you can can provide it, for your in-house labels
    */
    LabelsSource source = new LabelsSource("DOC_");

    ParagraphVectors vec = new ParagraphVectors.Builder()
            .minWordFrequency(1)
            .iterations(100)
            .epochs(1)
            .layerSize(50)
            .learningRate(0.02)
            .labelsSource(source)
            .windowSize(5)
            .iterate(iter)
            .trainWordVectors(true)
            .vocabCache(cache)
            .tokenizerFactory(t)
            .sampling(0)
            .build();

    vec.fit();

    WordVectorSerializer.writeParagraphVectors(vec, locationToSave);
}
 
开发者ID:gizemsogancioglu,项目名称:biosses,代码行数:34,代码来源:SentenceVectorsBasedSimilarity.java


示例10: testWord2VecAdaGrad

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator; //导入依赖的package包/类
@Test
public void testWord2VecAdaGrad() throws Exception {
    SentenceIterator iter = new BasicLineIterator(inputFile.getAbsolutePath());

    TokenizerFactory t = new DefaultTokenizerFactory();
    t.setTokenPreProcessor(new CommonPreprocessor());

    Word2Vec vec = new Word2Vec.Builder().minWordFrequency(5).iterations(5).learningRate(0.025).layerSize(100)
                    .seed(42).batchSize(13500).sampling(0).negativeSample(0)
                    //.epochs(10)
                    .windowSize(5).modelUtils(new BasicModelUtils<VocabWord>()).useAdaGrad(false)
                    .useHierarchicSoftmax(true).iterate(iter).workers(4).tokenizerFactory(t).build();

    vec.fit();

    Collection<String> lst = vec.wordsNearest("day", 10);
    log.info(Arrays.toString(lst.toArray()));

    //   assertEquals(10, lst.size());

    double sim = vec.similarity("day", "night");
    log.info("Day/night similarity: " + sim);

    assertTrue(lst.contains("week"));
    assertTrue(lst.contains("night"));
    assertTrue(lst.contains("year"));
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:28,代码来源:Word2VecTests.java


示例11: testWord2VecCBOW

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator; //导入依赖的package包/类
@Test
public void testWord2VecCBOW() throws Exception {
    SentenceIterator iter = new BasicLineIterator(inputFile.getAbsolutePath());

    TokenizerFactory t = new DefaultTokenizerFactory();
    t.setTokenPreProcessor(new CommonPreprocessor());

    Word2Vec vec = new Word2Vec.Builder().minWordFrequency(1).iterations(5).learningRate(0.025).layerSize(150)
                    .seed(42).sampling(0).negativeSample(0).useHierarchicSoftmax(true).windowSize(5)
                    .modelUtils(new BasicModelUtils<VocabWord>()).useAdaGrad(false).iterate(iter).workers(8)
                    .tokenizerFactory(t).elementsLearningAlgorithm(new CBOW<VocabWord>()).build();

    vec.fit();

    Collection<String> lst = vec.wordsNearest("day", 10);
    log.info(Arrays.toString(lst.toArray()));

    //   assertEquals(10, lst.size());

    double sim = vec.similarity("day", "night");
    log.info("Day/night similarity: " + sim);

    assertTrue(lst.contains("week"));
    assertTrue(lst.contains("night"));
    assertTrue(lst.contains("year"));
    assertTrue(sim > 0.65f);
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:28,代码来源:Word2VecTests.java


示例12: ASCIICoOccurrenceReader

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator; //导入依赖的package包/类
public ASCIICoOccurrenceReader(@NonNull File file, @NonNull VocabCache<T> vocabCache) {
    this.vocabCache = vocabCache;
    this.file = file;
    try {
        iterator = new PrefetchingSentenceIterator.Builder(new BasicLineIterator(file)).build();
    } catch (Exception e) {
        throw new RuntimeException(e);
    }
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:10,代码来源:ASCIICoOccurrenceReader.java


示例13: testHasNextDocument2

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator; //导入依赖的package包/类
@Test
public void testHasNextDocument2() throws Exception {

    File inputFile = new ClassPathResource("/big/raw_sentences.txt").getFile();
    SentenceIterator iter = new BasicLineIterator(inputFile.getAbsolutePath());

    BasicLabelAwareIterator iterator = new BasicLabelAwareIterator.Builder(iter).setLabelTemplate("DOCZ_").build();

    int cnt = 0;
    while (iterator.hasNextDocument()) {
        iterator.nextDocument();
        cnt++;
    }

    assertEquals(97162, cnt);

    iterator.reset();

    cnt = 0;
    while (iterator.hasNextDocument()) {
        iterator.nextDocument();
        cnt++;
    }

    assertEquals(97162, cnt);

    LabelsSource generator = iterator.getLabelsSource();

    // this is important moment. Iterator after reset should not increase number of labels attained
    assertEquals(97162, generator.getLabels().size());
    assertEquals("DOCZ_0", generator.getLabels().get(0));
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:33,代码来源:BasicLabelAwareIteratorTest.java


示例14: main

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
    ClassPathResource srcFile = new ClassPathResource("/raw_sentences.txt");
    File file = srcFile.getFile();
    SentenceIterator iter = new BasicLineIterator(file);
    
    TokenizerFactory tFact = new DefaultTokenizerFactory();
    tFact.setTokenPreProcessor(new CommonPreprocessor());

    LabelsSource labelFormat = new LabelsSource("LINE_");

    ParagraphVectors vec = new ParagraphVectors.Builder()
            .minWordFrequency(1)
            .iterations(5)
            .epochs(1)
            .layerSize(100)
            .learningRate(0.025)
            .labelsSource(labelFormat)
            .windowSize(5)
            .iterate(iter)
            .trainWordVectors(false)
            .tokenizerFactory(tFact)
            .sampling(0)
            .build();

    vec.fit();

    double similar1 = vec.similarity("LINE_9835", "LINE_12492");
    out.println("Comparing lines 9836 & 12493 ('This is my house .'/'This is my world .') Similarity = " + similar1);


    double similar2 = vec.similarity("LINE_3720", "LINE_16392");
    out.println("Comparing lines 3721 & 16393 ('This is my way .'/'This is my work .') Similarity = " + similar2);

    double similar3 = vec.similarity("LINE_6347", "LINE_3720");
    out.println("Comparing lines 6348 & 3721 ('This is my case .'/'This is my way .') Similarity = " + similar3);

    double dissimilar1 = vec.similarity("LINE_3720", "LINE_9852");
    out.println("Comparing lines 3721 & 9853 ('This is my way .'/'We now have one .') Similarity = " + dissimilar1);
    
    double dissimilar2 = vec.similarity("LINE_3720", "LINE_3719");
    out.println("Comparing lines 3721 & 3720 ('This is my way .'/'At first he says no .') Similarity = " + dissimilar2);
    
    
    
}
 
开发者ID:PacktPublishing,项目名称:Machine-Learning-End-to-Endguide-for-Java-developers,代码行数:46,代码来源:ClassifyBySimilarity.java


示例15: testWord2VecCBOWBig

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator; //导入依赖的package包/类
@Ignore
@Test
public void testWord2VecCBOWBig() throws Exception {
    SentenceIterator iter = new BasicLineIterator("/home/raver119/Downloads/corpus/namuwiki_raw.txt");
    //iter = new BasicLineIterator("/home/raver119/Downloads/corpus/ru_sentences.txt");
    //SentenceIterator iter = new BasicLineIterator("/ext/DATASETS/ru/Socials/ru_sentences.txt");

    TokenizerFactory t = new KoreanTokenizerFactory();
    //t = new DefaultTokenizerFactory();
    //t.setTokenPreProcessor(new CommonPreprocessor());

    Word2Vec vec = new Word2Vec.Builder().minWordFrequency(1).iterations(5).learningRate(0.025).layerSize(150)
                    .seed(42).sampling(0).negativeSample(0).useHierarchicSoftmax(true).windowSize(5)
                    .modelUtils(new BasicModelUtils<VocabWord>()).useAdaGrad(false).iterate(iter).workers(8)
                    .allowParallelTokenization(true).tokenizerFactory(t)
                    .elementsLearningAlgorithm(new CBOW<VocabWord>()).build();

    long time1 = System.currentTimeMillis();

    vec.fit();

    long time2 = System.currentTimeMillis();

    log.info("Total execution time: {}", (time2 - time1));
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:26,代码来源:PerformanceTests.java


示例16: testRunWord2Vec

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator; //导入依赖的package包/类
@Test
public void testRunWord2Vec() throws Exception {
    // Strip white space before and after for each line
    SentenceIterator iter = new BasicLineIterator(inputFile.getAbsolutePath());
    // Split on white spaces in the line to get words
    TokenizerFactory t = new DefaultTokenizerFactory();
    t.setTokenPreProcessor(new CommonPreprocessor());


    Word2Vec vec = new Word2Vec.Builder().minWordFrequency(1).iterations(3).batchSize(64).layerSize(100)
                    .stopWords(new ArrayList<String>()).seed(42).learningRate(0.025).minLearningRate(0.001)
                    .sampling(0).elementsLearningAlgorithm(new SkipGram<VocabWord>())
                    //.negativeSample(10)
                    .epochs(1).windowSize(5).allowParallelTokenization(true)
                    .modelUtils(new BasicModelUtils<VocabWord>()).iterate(iter).tokenizerFactory(t).build();

    assertEquals(new ArrayList<String>(), vec.getStopWords());
    vec.fit();
    File tempFile = File.createTempFile("temp", "temp");
    tempFile.deleteOnExit();

    WordVectorSerializer.writeFullModel(vec, tempFile.getAbsolutePath());
    Collection<String> lst = vec.wordsNearest("day", 10);
    //log.info(Arrays.toString(lst.toArray()));
    printWords("day", lst, vec);

    assertEquals(10, lst.size());

    double sim = vec.similarity("day", "night");
    log.info("Day/night similarity: " + sim);

    assertTrue(sim < 1.0);
    assertTrue(sim > 0.4);


    assertTrue(lst.contains("week"));
    assertTrue(lst.contains("night"));
    assertTrue(lst.contains("year"));

    assertFalse(lst.contains(null));


    lst = vec.wordsNearest("day", 10);
    //log.info(Arrays.toString(lst.toArray()));
    printWords("day", lst, vec);

    assertTrue(lst.contains("week"));
    assertTrue(lst.contains("night"));
    assertTrue(lst.contains("year"));

    new File("cache.ser").delete();

    ArrayList<String> labels = new ArrayList<>();
    labels.add("day");
    labels.add("night");
    labels.add("week");

    INDArray matrix = vec.getWordVectors(labels);
    assertEquals(matrix.getRow(0), vec.getWordVectorMatrix("day"));
    assertEquals(matrix.getRow(1), vec.getWordVectorMatrix("night"));
    assertEquals(matrix.getRow(2), vec.getWordVectorMatrix("week"));

    WordVectorSerializer.writeWordVectors(vec, pathToWriteto);
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:65,代码来源:Word2VecTests.java


示例17: testW2VnegativeOnRestore

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator; //导入依赖的package包/类
@Test
public void testW2VnegativeOnRestore() throws Exception {
    // Strip white space before and after for each line
    SentenceIterator iter = new BasicLineIterator(inputFile.getAbsolutePath());
    // Split on white spaces in the line to get words
    TokenizerFactory t = new DefaultTokenizerFactory();
    t.setTokenPreProcessor(new CommonPreprocessor());


    Word2Vec vec = new Word2Vec.Builder().minWordFrequency(1).iterations(3).batchSize(64).layerSize(100)
                    .stopWords(new ArrayList<String>()).seed(42).learningRate(0.025).minLearningRate(0.001)
                    .sampling(0).elementsLearningAlgorithm(new SkipGram<VocabWord>()).negativeSample(10).epochs(1)
                    .windowSize(5).useHierarchicSoftmax(false).allowParallelTokenization(true)
                    .modelUtils(new FlatModelUtils<VocabWord>()).iterate(iter).tokenizerFactory(t).build();


    assertEquals(false, vec.getConfiguration().isUseHierarchicSoftmax());

    log.info("Fit 1");
    vec.fit();

    File tmpFile = File.createTempFile("temp", "file");
    tmpFile.deleteOnExit();

    WordVectorSerializer.writeWord2VecModel(vec, tmpFile);

    iter.reset();

    Word2Vec restoredVec = WordVectorSerializer.readWord2VecModel(tmpFile, true);
    restoredVec.setTokenizerFactory(t);
    restoredVec.setSentenceIterator(iter);

    assertEquals(false, restoredVec.getConfiguration().isUseHierarchicSoftmax());
    assertTrue(restoredVec.getModelUtils() instanceof FlatModelUtils);
    assertTrue(restoredVec.getConfiguration().isAllowParallelTokenization());

    log.info("Fit 2");
    restoredVec.fit();


    iter.reset();
    restoredVec = WordVectorSerializer.readWord2VecModel(tmpFile, false);
    restoredVec.setTokenizerFactory(t);
    restoredVec.setSentenceIterator(iter);

    assertEquals(false, restoredVec.getConfiguration().isUseHierarchicSoftmax());
    assertTrue(restoredVec.getModelUtils() instanceof BasicModelUtils);

    log.info("Fit 3");
    restoredVec.fit();
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:52,代码来源:Word2VecTests.java


示例18: testUnknown1

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator; //导入依赖的package包/类
@Test
public void testUnknown1() throws Exception {
    // Strip white space before and after for each line
    SentenceIterator iter = new BasicLineIterator(inputFile.getAbsolutePath());
    // Split on white spaces in the line to get words
    TokenizerFactory t = new DefaultTokenizerFactory();
    t.setTokenPreProcessor(new CommonPreprocessor());

    Word2Vec vec = new Word2Vec.Builder().minWordFrequency(10).useUnknown(true)
                    .unknownElement(new VocabWord(1.0, "PEWPEW")).iterations(1).layerSize(100)
                    .stopWords(new ArrayList<String>()).seed(42).learningRate(0.025).minLearningRate(0.001)
                    .sampling(0).elementsLearningAlgorithm(new CBOW<VocabWord>()).epochs(1).windowSize(5)
                    .useHierarchicSoftmax(true).allowParallelTokenization(true)
                    .modelUtils(new FlatModelUtils<VocabWord>()).iterate(iter).tokenizerFactory(t).build();

    vec.fit();

    assertTrue(vec.hasWord("PEWPEW"));
    assertTrue(vec.getVocab().containsWord("PEWPEW"));

    INDArray unk = vec.getWordVectorMatrix("PEWPEW");
    assertNotEquals(null, unk);

    File tempFile = File.createTempFile("temp", "file");
    tempFile.deleteOnExit();

    WordVectorSerializer.writeWord2VecModel(vec, tempFile);

    log.info("Original configuration: {}", vec.getConfiguration());

    Word2Vec restored = WordVectorSerializer.readWord2VecModel(tempFile);

    assertTrue(restored.hasWord("PEWPEW"));
    assertTrue(restored.getVocab().containsWord("PEWPEW"));
    INDArray unk_restored = restored.getWordVectorMatrix("PEWPEW");

    assertEquals(unk, unk_restored);



    // now we're getting some junk word
    INDArray random = vec.getWordVectorMatrix("hhsd7d7sdnnmxc_SDsda");
    INDArray randomRestored = restored.getWordVectorMatrix("hhsd7d7sdnnmxc_SDsda");

    log.info("Restored configuration: {}", restored.getConfiguration());

    assertEquals(unk, random);
    assertEquals(unk, randomRestored);
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:50,代码来源:Word2VecTests.java


示例19: testOutputStream

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator; //导入依赖的package包/类
@Test
public void testOutputStream() throws Exception {
    File file = File.createTempFile("tmp_ser", "ssa");
    file.deleteOnExit();

    File inputFile = new ClassPathResource("/big/raw_sentences.txt").getFile();
    SentenceIterator iter = new BasicLineIterator(inputFile);
    // Split on white spaces in the line to get words
    TokenizerFactory t = new DefaultTokenizerFactory();
    t.setTokenPreProcessor(new CommonPreprocessor());

    InMemoryLookupCache cache = new InMemoryLookupCache(false);
    WeightLookupTable table = new InMemoryLookupTable.Builder().vectorLength(100).useAdaGrad(false).negative(5.0)
                    .cache(cache).lr(0.025f).build();

    Word2Vec vec = new Word2Vec.Builder().minWordFrequency(5).iterations(1).epochs(1).layerSize(100)
                    .lookupTable(table).stopWords(new ArrayList<String>()).useAdaGrad(false).negativeSample(5)
                    .vocabCache(cache).seed(42)
                    //                .workers(6)
                    .windowSize(5).iterate(iter).tokenizerFactory(t).build();

    assertEquals(new ArrayList<String>(), vec.getStopWords());
    vec.fit();

    INDArray day1 = vec.getWordVectorMatrix("day");

    WordVectorSerializer.writeWordVectors(vec, new FileOutputStream(file));

    WordVectors vec2 = WordVectorSerializer.loadTxtVectors(file);

    INDArray day2 = vec2.getWordVectorMatrix("day");

    assertEquals(day1, day2);

    File tempFile = File.createTempFile("tetsts", "Fdfs");
    tempFile.deleteOnExit();

    WordVectorSerializer.writeWord2VecModel(vec, tempFile);

    Word2Vec vec3 = WordVectorSerializer.readWord2VecModel(tempFile);
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:42,代码来源:WordVectorSerializerTest.java


示例20: testParagraphVectorsVocabBuilding1

import org.deeplearning4j.text.sentenceiterator.BasicLineIterator; //导入依赖的package包/类
/**
 * This test checks, how vocab is built using SentenceIterator provided, without labels.
 *
 * @throws Exception
 */
@Test
public void testParagraphVectorsVocabBuilding1() throws Exception {
    ClassPathResource resource = new ClassPathResource("/big/raw_sentences.txt");
    File file = resource.getFile();//.getParentFile();
    SentenceIterator iter = new BasicLineIterator(file); //UimaSentenceIterator.createWithPath(file.getAbsolutePath());

    int numberOfLines = 0;
    while (iter.hasNext()) {
        iter.nextSentence();
        numberOfLines++;
    }

    iter.reset();

    InMemoryLookupCache cache = new InMemoryLookupCache(false);

    TokenizerFactory t = new DefaultTokenizerFactory();
    t.setTokenPreProcessor(new CommonPreprocessor());

    // LabelsSource source = new LabelsSource("DOC_");

    ParagraphVectors vec = new ParagraphVectors.Builder().minWordFrequency(1).iterations(5).layerSize(100)
                    //      .labelsGenerator(source)
                    .windowSize(5).iterate(iter).vocabCache(cache).tokenizerFactory(t).build();

    vec.buildVocab();

    LabelsSource source = vec.getLabelsSource();


    //VocabCache cache = vec.getVocab();
    log.info("Number of lines in corpus: " + numberOfLines);
    assertEquals(numberOfLines, source.getLabels().size());
    assertEquals(97162, source.getLabels().size());

    assertNotEquals(null, cache);
    assertEquals(97406, cache.numWords());

    // proper number of words for minWordsFrequency = 1 is 244
    assertEquals(244, cache.numWords() - source.getLabels().size());
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:47,代码来源:ParagraphVectorsTest.java



注:本文中的org.deeplearning4j.text.sentenceiterator.BasicLineIterator类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Java TkForward类代码示例发布时间:2022-05-23
下一篇:
Java AutoGenerator类代码示例发布时间:2022-05-23
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap