• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python utils.timedcall函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中pyclustering.utils.timedcall函数的典型用法代码示例。如果您正苦于以下问题:Python timedcall函数的具体用法?Python timedcall怎么用?Python timedcall使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了timedcall函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: template_clustering

def template_clustering(number_clusters, path, links):
    sample = read_sample(path);
    
    clusters_centroid_link = None;
    clusters_single_link = None;
    clusters_complete_link = None;
    clusters_average_link = None;
    
    visualizer = cluster_visualizer(len(links));
    index_canvas = 0;
    
    if (type_link.CENTROID_LINK in links):
        agglomerative_centroid_link = agglomerative(sample, number_clusters, type_link.CENTROID_LINK);
        
        (ticks, result) = timedcall(agglomerative_centroid_link.process);
        clusters_centroid_link = agglomerative_centroid_link.get_clusters();
        
        visualizer.append_clusters(clusters_centroid_link, sample, index_canvas);
        visualizer.set_canvas_title('Link: Centroid', index_canvas);
        index_canvas += 1;
        
        print("Sample: ", path, "Link: Centroid", "\tExecution time: ", ticks, "\n");
    
    if (type_link.SINGLE_LINK in links):
        agglomerative_simple_link = agglomerative(sample, number_clusters, type_link.SINGLE_LINK);
        
        (ticks, result) = timedcall(agglomerative_simple_link.process);
        clusters_single_link = agglomerative_simple_link.get_clusters();
        
        visualizer.append_clusters(clusters_single_link, sample, index_canvas);
        visualizer.set_canvas_title('Link: Single', index_canvas);
        index_canvas += 1;
        
        print("Sample: ", path, "Link: Single", "\tExecution time: ", ticks, "\n");
    
    if (type_link.COMPLETE_LINK in links):
        agglomerative_complete_link = agglomerative(sample, number_clusters, type_link.COMPLETE_LINK);
        
        (ticks, result) = timedcall(agglomerative_complete_link.process);
        clusters_complete_link = agglomerative_complete_link.get_clusters();
        
        visualizer.append_clusters(clusters_complete_link, sample, index_canvas);
        visualizer.set_canvas_title('Link: Complete', index_canvas);
        index_canvas += 1;
        
        print("Sample: ", path, "Link: Complete", "\tExecution time: ", ticks, "\n");        
    
    if (type_link.AVERAGE_LINK in links):
        agglomerative_average_link = agglomerative(sample, number_clusters, type_link.AVERAGE_LINK);
        
        (ticks, result) = timedcall(agglomerative_average_link.process);
        clusters_average_link = agglomerative_average_link.get_clusters();
        
        visualizer.append_clusters(clusters_average_link, sample, index_canvas);
        visualizer.set_canvas_title('Link: Average', index_canvas);
        index_canvas += 1;
        
        print("Sample: ", path, "Link: Average", "\tExecution time: ", ticks, "\n");  
    
    visualizer.show();
开发者ID:Gudui,项目名称:pyclustering,代码行数:60,代码来源:agglomerative_examples.py


示例2: clustering_random_points

def clustering_random_points(amount, ccore):
    sample = [ [ random.random(), random.random() ] for _ in range(amount) ]
    
    dbscan_instance = dbscan(sample, 0.05, 20, ccore)
    (ticks, _) = timedcall(dbscan_instance.process)
    
    print("Execution time ("+ str(amount) +" 2D-points):", ticks)
开发者ID:annoviko,项目名称:pyclustering,代码行数:7,代码来源:dbscan_examples.py


示例3: template_clustering

def template_clustering(file, map_size, trust_order, sync_order = 0.999, show_dyn = False, show_layer1 = False, show_layer2 = False, show_clusters = True):
    # Read sample
    sample = read_sample(file);

    # Create network
    network = syncsom(sample, map_size[0], map_size[1]);
    
    # Run processing
    (ticks, (dyn_time, dyn_phase)) = timedcall(network.process, trust_order, show_dyn, sync_order);
    print("Sample: ", file, "\t\tExecution time: ", ticks, "\n");
    
    # Show dynamic of the last layer.
    if (show_dyn == True):
        draw_dynamics(dyn_time, dyn_phase, x_title = "Time", y_title = "Phase", y_lim = [0, 2 * 3.14]);
    
    if (show_clusters == True):
        clusters = network.get_som_clusters();
        draw_clusters(network.som_layer.weights, clusters);
    
    # Show network stuff.
    if (show_layer1 == True):
        network.show_som_layer();
    
    if (show_layer2 == True):
        network.show_sync_layer();
    
    if (show_clusters == True):
        clusters = network.get_clusters();
        draw_clusters(sample, clusters);
开发者ID:terry07,项目名称:pyclustering,代码行数:29,代码来源:syncsom_examples.py


示例4: clustering_random_points

def clustering_random_points(amount_points, amount_centers, ccore):
    sample = [ [ random.random(), random.random() ] for _ in range(amount_points) ]
    centers = [ [ random.random(), random.random() ] for _ in range(amount_centers) ]
    
    kmeans_instance = kmeans(sample, centers, 0.0001, ccore)
    (ticks, _) = timedcall(kmeans_instance.process)
    
    print("Execution time ("+ str(amount_points) +" 2D-points):", ticks)
开发者ID:annoviko,项目名称:pyclustering,代码行数:8,代码来源:kmeans_examples.py


示例5: template_clustering

def template_clustering(start_centers, path, tolerance = 0.25):
    sample = read_sample(path);
    
    kmedians_instance = kmedians(sample, start_centers, tolerance);
    (ticks, result) = timedcall(kmedians_instance.process);
    
    clusters = kmedians_instance.get_clusters();
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");

    draw_clusters(sample, clusters);
开发者ID:RuhiSharma,项目名称:pyclustering,代码行数:10,代码来源:kmedians_example.py


示例6: template_clustering

def template_clustering(number_clusters, path, branching_factor = 5, max_node_entries = 5, initial_diameter = 0.0, type_measurement = measurement_type.CENTROID_EUCLIDIAN_DISTANCE, entry_size_limit = 200, ccore = True):
    sample = read_sample(path);

    birch_instance = birch(sample, number_clusters, branching_factor, max_node_entries, initial_diameter, type_measurement, entry_size_limit, ccore)
    (ticks, result) = timedcall(birch_instance.process);

    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");

    clusters = birch_instance.get_clusters();
    draw_clusters(sample, clusters);
开发者ID:SnehalTikare,项目名称:pyclustering,代码行数:10,代码来源:birch_examples.py


示例7: template_clustering

def template_clustering(number_clusters, path, iterations, maxneighbors):
    sample = read_sample(path);

    clarans_instance = clarans(sample, number_clusters, iterations, maxneighbors);
    (ticks, result) = timedcall(clarans_instance.process);

    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");

    clusters = clarans_instance.get_clusters();
    draw_clusters(sample, clusters);
开发者ID:annoviko,项目名称:pyclustering,代码行数:10,代码来源:clarans_examples.py


示例8: template_clustering_performance

def template_clustering_performance(start_centers, path, tolerance = 0.025, criterion = splitting_type.BAYESIAN_INFORMATION_CRITERION, ccore = False):
    sample = read_sample(path)
    
    xmeans_instance = xmeans(sample, start_centers, 20, tolerance, criterion, ccore)
    (ticks, _) = timedcall(xmeans_instance.process)

    criterion_string = "UNKNOWN"
    if (criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION): criterion_string = "BAYESIAN INFORMATION CRITERION";
    elif (criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH): criterion_string = "MINIMUM NOISELESS DESCRIPTION_LENGTH";
    
    print("Sample: ", ntpath.basename(path), "', Execution time: '", ticks, "',", criterion_string)
开发者ID:annoviko,项目名称:pyclustering,代码行数:11,代码来源:xmeans_examples.py


示例9: template_segmentation_image

def template_segmentation_image(source, map_som_size = [5, 5], average_neighbors = 5, sync_order = 0.998, show_dyn = False, show_som_map = False):
    data = read_image(source);
    
    network = syncsom(data, map_som_size[0], map_som_size[1]);
    (ticks, (dyn_time, dyn_phase)) = timedcall(network.process, average_neighbors, show_dyn, sync_order);
    print("Sample: ", source, "\t\tExecution time: ", ticks, "\t\tWinners: ", network.som_layer.get_winner_number(), "\n");
    
    if (show_dyn is True):
        draw_dynamics(dyn_time, dyn_phase);
    
    clusters = network.get_clusters();
    draw_image_mask_segments(source, clusters);
开发者ID:Gudui,项目名称:pyclustering,代码行数:12,代码来源:syncsom_segmentation.py


示例10: template_clustering

def template_clustering(path, radius, cluster_numbers, threshold, draw = True, ccore = True):
    sample = read_sample(path);
    
    rock_instance = rock(sample, radius, cluster_numbers, threshold, ccore);
    (ticks, result) = timedcall(rock_instance.process);
    
    clusters = rock_instance.get_clusters();
    
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");
    
    if (draw == True):
        draw_clusters(sample, clusters);
开发者ID:terry07,项目名称:pyclustering,代码行数:12,代码来源:rock_examples.py


示例11: template_clustering

def template_clustering(file, number_clusters, arg_order = 0.999, arg_collect_dynamic = True, ccore_flag = False):
        sample = read_sample(file);
        network = hsyncnet(sample, number_clusters, initial_neighbors = int(len(sample) * 0.15), osc_initial_phases = initial_type.EQUIPARTITION, ccore = ccore_flag);
        
        (ticks, analyser) = timedcall(network.process, arg_order, solve_type.FAST, arg_collect_dynamic);
        print("Sample: ", file, "\t\tExecution time: ", ticks, "\n");
        
        clusters = analyser.allocate_clusters();
        
        if (arg_collect_dynamic == True):
            sync_visualizer.show_output_dynamic(analyser);
        
        draw_clusters(sample, clusters);
开发者ID:terry07,项目名称:pyclustering,代码行数:13,代码来源:hsyncnet_examples.py


示例12: template_clustering

def template_clustering(number_clusters, path, number_represent_points = 5, compression = 0.5, draw = True, ccore_flag = False):
    sample = read_sample(path);
    
    cure_instance = cure(sample, number_clusters, number_represent_points, compression, ccore_flag);
    (ticks, result) = timedcall(cure_instance.process);
    clusters = cure_instance.get_clusters();
    
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");

    if (draw is True):
        if (ccore_flag is True):
            draw_clusters(sample, clusters);
        else:
            draw_clusters(None, clusters);
开发者ID:Gudui,项目名称:pyclustering,代码行数:14,代码来源:cure_examples.py


示例13: template_clustering

def template_clustering(start_centers, path, tolerance = 0.025, criterion = splitting_type.BAYESIAN_INFORMATION_CRITERION, ccore = False):
    sample = read_sample(path);
    
    xmeans_instance = xmeans(sample, start_centers, 20, tolerance, criterion, ccore);
    (ticks, result) = timedcall(xmeans_instance.process);
    
    clusters = xmeans_instance.get_clusters();

    criterion_string = "UNKNOWN";
    if (criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION): criterion_string = "BAYESIAN_INFORMATION_CRITERION";
    elif (criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH): criterion_string = "MINIMUM_NOISELESS_DESCRIPTION_LENGTH";
    
    print("Sample: ", path, "\tExecution time: ", ticks, "Number of clusters: ", len(clusters), criterion_string, "\n");

    draw_clusters(sample, clusters);
开发者ID:terry07,项目名称:pyclustering,代码行数:15,代码来源:xmeans_examples.py


示例14: template_clustering

def template_clustering(start_medoids, path, tolerance = 0.25, show = True):
    sample = read_sample(path);
    
    kmedoids_instance = kmedoids(sample, start_medoids, tolerance);
    (ticks, result) = timedcall(kmedoids_instance.process);
    
    clusters = kmedoids_instance.get_clusters();
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");

    if (show is True):
        visualizer = cluster_visualizer(1);
        visualizer.append_clusters(clusters, sample, 0);
        visualizer.show();
    
    return (sample, clusters);
开发者ID:terry07,项目名称:pyclustering,代码行数:15,代码来源:kmedoids_examples.py


示例15: template_clustering

def template_clustering(radius, neighb, path, invisible_axes = False, ccore = True):
    sample = read_sample(path);
    
    dbscan_instance = dbscan(sample, radius, neighb, ccore);
    (ticks, result) = timedcall(dbscan_instance.process);
    
    clusters = dbscan_instance.get_clusters();
    noise = dbscan_instance.get_noise();
    
    visualizer = cluster_visualizer();
    visualizer.append_clusters(clusters, sample);
    visualizer.append_cluster(noise, sample, marker = 'x');
    visualizer.show();
    
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");
开发者ID:Gudui,项目名称:pyclustering,代码行数:15,代码来源:dbscan_examples.py


示例16: template_clustering

def template_clustering(number_clusters, path, branching_factor = 5, max_node_entries = 5, initial_diameter = 0.0, type_measurement = measurement_type.AVERAGE_INTER_CLUSTER_DISTANCE, entry_size_limit = 200, diameter_multiplier = 1.5, show_result = True):
    sample = read_sample(path);

    birch_instance = birch(sample, number_clusters, branching_factor, max_node_entries, initial_diameter, type_measurement, entry_size_limit, diameter_multiplier);
    (ticks, result) = timedcall(birch_instance.process);

    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");

    clusters = birch_instance.get_clusters();
    
    if (show_result is True):
        visualizer = cluster_visualizer();
        visualizer.append_clusters(clusters, sample);
        visualizer.show();
    
    return (sample, clusters);
开发者ID:annoviko,项目名称:pyclustering,代码行数:16,代码来源:birch_examples.py


示例17: template_clustering

def template_clustering(start_centers, path, tolerance=0.25, ccore=True):
    sample = read_sample(path)

    kmeans_instance = kmeans(sample, start_centers, tolerance, ccore)
    (ticks, result) = timedcall(kmeans_instance.process)

    clusters = kmeans_instance.get_clusters()
    centers = kmeans_instance.get_centers()

    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")

    visualizer = cluster_visualizer()
    visualizer.append_clusters(clusters, sample)
    visualizer.append_cluster(start_centers, marker="*", markersize=20)
    visualizer.append_cluster(centers, marker="*", markersize=20)
    visualizer.show()
开发者ID:SnehalTikare,项目名称:pyclustering,代码行数:16,代码来源:kmeans_examples.py


示例18: template_clustering

def template_clustering(file, radius, order, show_dyn = False, show_conn = False, show_clusters = True, ena_conn_weight = False, ccore_flag = True, tolerance = 0.1):
    sample = read_sample(file);
    network = syncnet(sample, radius, enable_conn_weight = ena_conn_weight, ccore = ccore_flag);
    
    (ticks, analyser) = timedcall(network.process, order, solve_type.FAST, show_dyn);
    print("Sample: ", file, "\t\tExecution time: ", ticks, "\n");
    
    if (show_dyn == True):
        sync_visualizer.show_output_dynamic(analyser);
        sync_visualizer.animate_output_dynamic(analyser);
    
    if ( (show_conn == True) and (ccore_flag == False) ):
        network.show_network();
    
    if (show_clusters == True):
        clusters = analyser.allocate_clusters(tolerance);
        draw_clusters(sample, clusters);
开发者ID:terry07,项目名称:pyclustering,代码行数:17,代码来源:syncnet_examples.py


示例19: template_clustering

def template_clustering(start_medoids, path, tolerance = 0.25, show = True):
    sample = read_sample(path)
    
    kmedoids_instance = kmedoids(sample, start_medoids, tolerance)
    (ticks, result) = timedcall(kmedoids_instance.process)
    
    clusters = kmedoids_instance.get_clusters()
    medoids = kmedoids_instance.get_medoids()
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")

    if show is True:
        visualizer = cluster_visualizer(1)
        visualizer.append_clusters(clusters, sample, 0)
        visualizer.append_cluster([sample[index] for index in start_medoids], marker='*', markersize=15)
        visualizer.append_cluster(medoids, data=sample, marker='*', markersize=15)
        visualizer.show()
    
    return sample, clusters
开发者ID:annoviko,项目名称:pyclustering,代码行数:18,代码来源:kmedoids_examples.py


示例20: template_clustering_random_points_performance

def template_clustering_random_points_performance(cluster_length, amount_clusters, ccore_flag):
    sample = [ [ random.random(), random.random() ] for _ in range(cluster_length) ]
    for index in range(1, amount_clusters):
        default_offset = 5
        sample += [ [ random.random() + default_offset * index, random.random() + default_offset * index ] for _ in range(cluster_length) ]
    
    initial_center = [ [ random.random(), random.random() ], [ random.random(), random.random() ] ]
    xmeans_instance = xmeans(sample, initial_center, 20, 0.25, splitting_type.BAYESIAN_INFORMATION_CRITERION, ccore_flag)
    
    ticks_array = []
    amount_measures = 5
    
    for _ in range(amount_measures):
        xmeans_instance = xmeans(sample, initial_center, 20, 0.25, splitting_type.BAYESIAN_INFORMATION_CRITERION, ccore_flag)
        (ticks, _) = timedcall(xmeans_instance.process)
        
        ticks_array.append(ticks)
    
    print("Random sample: (size:" + str(len(sample)) + ") ', Execution time: '", sum(ticks_array) / amount_measures)
开发者ID:annoviko,项目名称:pyclustering,代码行数:19,代码来源:xmeans_examples.py



注:本文中的pyclustering.utils.timedcall函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python metric.distance_metric函数代码示例发布时间:2022-05-25
下一篇:
Python utils.read_sample函数代码示例发布时间:2022-05-25
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap