• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python utils.read_sample函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中pyclustering.utils.read_sample函数的典型用法代码示例。如果您正苦于以下问题:Python read_sample函数的具体用法?Python read_sample怎么用?Python read_sample使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了read_sample函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: testVisualize2DAnd3DClusters

 def testVisualize2DAnd3DClusters(self):
     sample_2d = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE1);
     sample_3d = read_sample(FCPS_SAMPLES.SAMPLE_HEPTA);
       
     visualizer = cluster_visualizer(2, 2);
     visualizer.append_clusters([ sample_2d ], None, 0, markersize = 5);
     visualizer.append_clusters([ sample_3d ], None, 1, markersize = 30);
     visualizer.show();
开发者ID:annoviko,项目名称:pyclustering,代码行数:8,代码来源:ut_general.py


示例2: testVisualize3DClustersTwoCanvases

 def testVisualize3DClustersTwoCanvases(self):
     sample_tetra = read_sample(FCPS_SAMPLES.SAMPLE_TETRA);
     sample_hepta = read_sample(FCPS_SAMPLES.SAMPLE_HEPTA);
           
     # Two canvas visualization
     visualizer = cluster_visualizer(2);
     visualizer.append_clusters([ sample_tetra ], None, 0, markersize = 30);
     visualizer.append_clusters([ sample_hepta ], None, 1, markersize = 30);
     visualizer.show();
开发者ID:annoviko,项目名称:pyclustering,代码行数:9,代码来源:ut_general.py


示例3: testVisualize1DClustersTwoCanvases

 def testVisualize1DClustersTwoCanvases(self):
     sample_simple7 = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE7);
     sample_simple8 = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE8);
  
     # Two canvas visualization
     visualizer = cluster_visualizer(2);
     visualizer.append_clusters([ sample_simple7 ], None, 0, markersize = 30);
     visualizer.append_clusters([ sample_simple8 ], None, 1, markersize = 30);
     visualizer.show();
开发者ID:annoviko,项目名称:pyclustering,代码行数:9,代码来源:ut_general.py


示例4: testVisualizeRectangeRepresentation2x2

 def testVisualizeRectangeRepresentation2x2(self):
     sample_simple1 = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE1);
     sample_simple2 = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE2);
     sample_simple3 = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE3);
        
     visualizer = cluster_visualizer(3, 2);
     visualizer.append_clusters([ sample_simple1 ], None, 0, markersize = 5);
     visualizer.append_clusters([ sample_simple2 ], None, 1, markersize = 5);
     visualizer.append_clusters([ sample_simple3 ], None, 2, markersize = 5);
     visualizer.show();
开发者ID:annoviko,项目名称:pyclustering,代码行数:10,代码来源:ut_general.py


示例5: testVisualizeByDataOnly

 def testVisualizeByDataOnly(self):
     visualizer = cluster_visualizer();
      
     sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE1);
     visualizer.append_clusters([ sample ]);
      
     visualizer.show();
开发者ID:annoviko,项目名称:pyclustering,代码行数:7,代码来源:ut_general.py


示例6: correct_ksearch

    def correct_ksearch(sample_path, answer_path, kmin, kmax, algorithm, ccore_flag):
        attempts = 10
        testing_result = False

        sample = read_sample(sample_path)
        clusters = answer_reader(answer_path).get_clusters()

        for _ in range(attempts):
            ksearch_instance = silhouette_ksearch(sample, kmin, kmax, algorithm=algorithm, ccore=ccore_flag).process()
            amount = ksearch_instance.get_amount()
            score = ksearch_instance.get_score()
            scores = ksearch_instance.get_scores()

            assertion.le(-1.0, score)
            assertion.ge(1.0, score)
            assertion.eq(kmax - kmin, len(scores))

            upper_limit = len(clusters) + 1
            lower_limit = len(clusters) - 1
            if lower_limit < 1:
                lower_limit = 1

            if (amount > upper_limit) or (amount < lower_limit):
                continue

            testing_result = True
            break

        assertion.true(testing_result)
开发者ID:annoviko,项目名称:pyclustering,代码行数:29,代码来源:silhouette_templates.py


示例7: template_clustering

def template_clustering(file, map_size, trust_order, sync_order = 0.999, show_dyn = False, show_layer1 = False, show_layer2 = False, show_clusters = True):
    # Read sample
    sample = read_sample(file);

    # Create network
    network = syncsom(sample, map_size[0], map_size[1]);
    
    # Run processing
    (ticks, (dyn_time, dyn_phase)) = timedcall(network.process, trust_order, show_dyn, sync_order);
    print("Sample: ", file, "\t\tExecution time: ", ticks, "\n");
    
    # Show dynamic of the last layer.
    if (show_dyn == True):
        draw_dynamics(dyn_time, dyn_phase, x_title = "Time", y_title = "Phase", y_lim = [0, 2 * 3.14]);
    
    if (show_clusters == True):
        clusters = network.get_som_clusters();
        draw_clusters(network.som_layer.weights, clusters);
    
    # Show network stuff.
    if (show_layer1 == True):
        network.show_som_layer();
    
    if (show_layer2 == True):
        network.show_sync_layer();
    
    if (show_clusters == True):
        clusters = network.get_clusters();
        draw_clusters(sample, clusters);
开发者ID:terry07,项目名称:pyclustering,代码行数:29,代码来源:syncsom_examples.py


示例8: clustering

    def clustering(path, amount, threshold, expected, ccore, **kwargs):
        metric = kwargs.get('metric', distance_metric(type_metric.EUCLIDEAN));

        sample = read_sample(path);

        bsas_instance = bsas(sample, amount, threshold, ccore=ccore, metric=metric);
        bsas_instance.process();

        clusters = bsas_instance.get_clusters();
        representatives = bsas_instance.get_representatives();

        obtained_length = 0;
        obtained_cluster_length = [];
        for cluster in clusters:
            obtained_length += len(cluster);
            obtained_cluster_length.append(len(cluster));

        assertion.eq(len(sample), obtained_length);
        assertion.eq(len(expected), len(clusters));
        assertion.eq(len(expected), len(representatives));
        assertion.ge(amount, len(clusters));

        dimension = len(sample[0]);
        for rep in representatives:
            assertion.eq(dimension, len(rep));

        expected.sort();
        obtained_cluster_length.sort();

        assertion.eq(expected, obtained_cluster_length);
开发者ID:annoviko,项目名称:pyclustering,代码行数:30,代码来源:bsas_templates.py


示例9: testAllocatedRequestedClustersSampleSimple03

 def testAllocatedRequestedClustersSampleSimple03(self):
     sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE3)
     KmedoidsTestTemplates.templateAllocateRequestedClusterAmount(sample, 2, None, False)
     KmedoidsTestTemplates.templateAllocateRequestedClusterAmount(sample, 5, None, False)
     KmedoidsTestTemplates.templateAllocateRequestedClusterAmount(sample, 8, None, False)
     KmedoidsTestTemplates.templateAllocateRequestedClusterAmount(sample, 10, None, False)
     KmedoidsTestTemplates.templateAllocateRequestedClusterAmount(sample, 15, None, False)
开发者ID:annoviko,项目名称:pyclustering,代码行数:7,代码来源:ut_kmedoids.py


示例10: template_visualize

    def template_visualize(self, path_sample, path_answer, filter=None, **kwargs):
        data = read_sample(path_sample)
        clusters = answer_reader(path_answer).get_clusters()

        visualizer = cluster_visualizer_multidim()
        visualizer.append_clusters(clusters, data)
        visualizer.show(filter, **kwargs)
开发者ID:annoviko,项目名称:pyclustering,代码行数:7,代码来源:ut_visualizer.py


示例11: template_cluster_allocation

    def template_cluster_allocation(input_data, cluster_sizes, number_cluster, number_represent_points = 5, compression = 0.5, ccore_flag = False, **kwargs):
        if isinstance(input_data, str):
            sample = read_sample(input_data)
        else:
            sample = input_data

        numpy_usage = kwargs.get('numpy_usage', False)
        if numpy_usage is True:
            sample = numpy.array(sample)
         
        cure_instance = cure(sample, number_cluster, number_represent_points, compression, ccore = ccore_flag)
        cure_instance.process()
         
        clusters = cure_instance.get_clusters()
        representors = cure_instance.get_representors()
        means = cure_instance.get_means()

        assertion.eq(len(clusters), number_cluster)
        assertion.eq(len(representors), number_cluster)
        assertion.eq(len(means), number_cluster)
         
        obtained_cluster_sizes = [len(cluster) for cluster in clusters]
         
        total_length = sum(obtained_cluster_sizes)
        assertion.eq(total_length, len(sample))
         
        cluster_sizes.sort()
        obtained_cluster_sizes.sort()
        assertion.eq(cluster_sizes, obtained_cluster_sizes)
开发者ID:annoviko,项目名称:pyclustering,代码行数:29,代码来源:cure_templates.py


示例12: template_clustering

def template_clustering(sample_file_path, amount_clusters, initializer, show_animation = False):
    sample = read_sample(sample_file_path);
    
    observer = None;
    if (show_animation is True):
        observer = ema_observer();

    initial_means, initial_covariance = ema_initializer(sample, amount_clusters).initialize(initializer);
    ema_instance = ema(sample, amount_clusters, initial_means, initial_covariance, observer=observer);
    ema_instance.process();
    
    clusters = ema_instance.get_clusters();
    covariances = ema_instance.get_covariances();
    means = ema_instance.get_centers();

    cluster_length = [ len(cluster) for cluster in clusters ];

    print("Data '" + sample_file_path + "'");
    print("Clusters: " + str(len(clusters)) + ", Length:" + str(cluster_length));

    if (observer is True):
        ema_visualizer.show_clusters(observer.get_evolution_clusters()[0], sample, observer.get_evolution_covariances()[0], observer.get_evolution_means()[0]);
    
    ema_visualizer.show_clusters(clusters, sample, covariances, means);
    
    if (show_animation is True):
        ema_visualizer.animate_cluster_allocation(sample, observer);
开发者ID:annoviko,项目名称:pyclustering,代码行数:27,代码来源:ema_examples.py


示例13: templateClustering

 def templateClustering(self, file, radius, order, solver, initial, storage_flag, conn_weigh_flag, tolerance, connection, expected_cluster_length, ccore_flag):
     result_testing = False;
     
     # If phases crosses each other because of random part of the network then we should try again.
     for attempt in range(0, 4, 1):
         sample = read_sample(file);
         network = syncnet(sample, radius, connection, initial, conn_weigh_flag, ccore_flag);
         analyser = network.process(order, solver, storage_flag);
         
         clusters = analyser.allocate_clusters(tolerance);
         
         obtained_cluster_sizes = [len(cluster) for cluster in clusters];
 
         if (len(obtained_cluster_sizes) != len(expected_cluster_length)):
             continue;
         
         obtained_cluster_sizes.sort();
         expected_cluster_length.sort();
         
         if (obtained_cluster_sizes != expected_cluster_length):
             continue;
         
         # Unit-test is passed
         result_testing = True;
         break;
     
     assert result_testing;
开发者ID:RuhiSharma,项目名称:pyclustering,代码行数:27,代码来源:syncnet_tests.py


示例14: templateClusteringWithAnswers

    def templateClusteringWithAnswers(sample_path, answer_path, radius, neighbors, ccore, **kwargs):
        random_order = kwargs.get('random_order', False)
        repeat = kwargs.get('repeat', 1)

        for _ in range(repeat):
            sample = read_sample(sample_path)

            sample_index_map = [ i for i in range(len(sample)) ]
            if random_order:
                shuffle(sample_index_map)

            sample_shuffled = [ sample[i] for i in sample_index_map ]

            dbscan_instance = dbscan(sample_shuffled, radius, neighbors, ccore)
            dbscan_instance.process()

            clusters = dbscan_instance.get_clusters()
            noise = dbscan_instance.get_noise()

            for cluster in clusters:
                for i in range(len(cluster)):
                    cluster[i] = sample_index_map[cluster[i]]

            for i in range(len(noise)):
                noise[i] = sample_index_map[noise[i]]
            noise = sorted(noise)

            reader = answer_reader(answer_path)
            expected_noise = sorted(reader.get_noise())
            expected_length_clusters = reader.get_cluster_lengths()

            assertion.eq(len(sample), sum([len(cluster) for cluster in clusters]) + len(noise))
            assertion.eq(sum(expected_length_clusters), sum([len(cluster) for cluster in clusters]))
            assertion.eq(expected_length_clusters, sorted([len(cluster) for cluster in clusters]))
            assertion.eq(expected_noise, noise)
开发者ID:annoviko,项目名称:pyclustering,代码行数:35,代码来源:dbscan_templates.py


示例15: template_clustering

def template_clustering(number_clusters, path, links):
    sample = read_sample(path);
    
    clusters_centroid_link = None;
    clusters_single_link = None;
    clusters_complete_link = None;
    clusters_average_link = None;
    
    visualizer = cluster_visualizer(len(links));
    index_canvas = 0;
    
    if (type_link.CENTROID_LINK in links):
        agglomerative_centroid_link = agglomerative(sample, number_clusters, type_link.CENTROID_LINK);
        
        (ticks, result) = timedcall(agglomerative_centroid_link.process);
        clusters_centroid_link = agglomerative_centroid_link.get_clusters();
        
        visualizer.append_clusters(clusters_centroid_link, sample, index_canvas);
        visualizer.set_canvas_title('Link: Centroid', index_canvas);
        index_canvas += 1;
        
        print("Sample: ", path, "Link: Centroid", "\tExecution time: ", ticks, "\n");
    
    if (type_link.SINGLE_LINK in links):
        agglomerative_simple_link = agglomerative(sample, number_clusters, type_link.SINGLE_LINK);
        
        (ticks, result) = timedcall(agglomerative_simple_link.process);
        clusters_single_link = agglomerative_simple_link.get_clusters();
        
        visualizer.append_clusters(clusters_single_link, sample, index_canvas);
        visualizer.set_canvas_title('Link: Single', index_canvas);
        index_canvas += 1;
        
        print("Sample: ", path, "Link: Single", "\tExecution time: ", ticks, "\n");
    
    if (type_link.COMPLETE_LINK in links):
        agglomerative_complete_link = agglomerative(sample, number_clusters, type_link.COMPLETE_LINK);
        
        (ticks, result) = timedcall(agglomerative_complete_link.process);
        clusters_complete_link = agglomerative_complete_link.get_clusters();
        
        visualizer.append_clusters(clusters_complete_link, sample, index_canvas);
        visualizer.set_canvas_title('Link: Complete', index_canvas);
        index_canvas += 1;
        
        print("Sample: ", path, "Link: Complete", "\tExecution time: ", ticks, "\n");        
    
    if (type_link.AVERAGE_LINK in links):
        agglomerative_average_link = agglomerative(sample, number_clusters, type_link.AVERAGE_LINK);
        
        (ticks, result) = timedcall(agglomerative_average_link.process);
        clusters_average_link = agglomerative_average_link.get_clusters();
        
        visualizer.append_clusters(clusters_average_link, sample, index_canvas);
        visualizer.set_canvas_title('Link: Average', index_canvas);
        index_canvas += 1;
        
        print("Sample: ", path, "Link: Average", "\tExecution time: ", ticks, "\n");  
    
    visualizer.show();
开发者ID:Gudui,项目名称:pyclustering,代码行数:60,代码来源:agglomerative_examples.py


示例16: templateLengthProcessData

    def templateLengthProcessData(data, start_medians, expected_cluster_length, ccore, **kwargs):
        tolerance = kwargs.get('tolerance', 0.01)
        metric = kwargs.get('metric', None)
        itermax = kwargs.get('itermax', 200)

        if isinstance(data, str):
            sample = read_sample(data)
        else:
            sample = data

        kmedians_instance = kmedians(sample, start_medians, tolerance, ccore, metric=metric, itermax=itermax)
        kmedians_instance.process()
        
        clusters = kmedians_instance.get_clusters()
        medians = kmedians_instance.get_medians()

        if itermax == 0:
            assert clusters == []
            assert start_medians == medians
            return

        obtained_cluster_sizes = [len(cluster) for cluster in clusters]
        assert len(sample) == sum(obtained_cluster_sizes)
        assert len(medians) == len(clusters)
        
        if expected_cluster_length is not None:
            obtained_cluster_sizes.sort()
            expected_cluster_length.sort()
            if obtained_cluster_sizes != expected_cluster_length:
                print(obtained_cluster_sizes)
            assert obtained_cluster_sizes == expected_cluster_length
开发者ID:annoviko,项目名称:pyclustering,代码行数:31,代码来源:kmedians_templates.py


示例17: elbow_analysis

def elbow_analysis(sample_file_path, kmin, kmax, **kwargs):
    initializer = kwargs.get('initializer', kmeans_plusplus_initializer)
    sample = read_sample(sample_file_path)

    elbow_instance = elbow(sample, kmin, kmax, initializer=initializer)
    elbow_instance.process()

    amount_clusters = elbow_instance.get_amount()
    wce = elbow_instance.get_wce()

    centers = kmeans_plusplus_initializer(sample, amount_clusters).initialize()
    kmeans_instance = kmeans(sample, centers)
    kmeans_instance.process()
    clusters = kmeans_instance.get_clusters()
    centers = kmeans_instance.get_centers()

    print("Sample '%s': Obtained amount of clusters: '%d'." % (sample_file_path, amount_clusters))

    figure = plt.figure(1)
    ax = figure.add_subplot(111)
    ax.plot(range(kmin, kmax), wce, color='b', marker='.')
    ax.plot(amount_clusters, wce[amount_clusters - kmin], color='r', marker='.', markersize=10)
    ax.annotate("Elbow", (amount_clusters + 0.1, wce[amount_clusters - kmin] + 5))
    ax.grid(True)
    plt.ylabel("WCE")
    plt.xlabel("K")
    plt.show()

    kmeans_visualizer.show_clusters(sample, clusters, centers)
开发者ID:annoviko,项目名称:pyclustering,代码行数:29,代码来源:elbow_examples.py


示例18: calculate_elbow

    def calculate_elbow(path_to_data, path_to_answer, kmin, kmax, ccore, **kwargs):
        repeat = 10  # Elbow method randomly chooses initial centers therefore we need to repeat test if it fails.
        testing_result = False

        initializer = kwargs.get('initializer', kmeans_plusplus_initializer)

        sample = read_sample(path_to_data)
        answer = answer_reader(path_to_answer)

        additional_info = []

        for _ in range(repeat):
            elbow_instance = elbow(sample, kmin, kmax, ccore=ccore, initializer=initializer)
            elbow_instance.process()

            actual_elbow = elbow_instance.get_amount()
            actual_wce = elbow_instance.get_wce()

            assertion.gt(actual_elbow, kmin)
            assertion.lt(actual_elbow, kmax)
            assertion.eq(len(actual_wce), kmax - kmin)
            assertion.lt(actual_wce[-1], actual_wce[0] + 0.0000001)

            if actual_elbow != len(answer.get_clusters()):
                additional_info.append(actual_elbow)
                #time.sleep(0.05)    # sleep to gain new seed for random generator
                continue

            testing_result = True
            break

        message = str(len(answer.get_clusters())) + ": " + str(additional_info)
        assertion.true(testing_result, message=message)
开发者ID:annoviko,项目名称:pyclustering,代码行数:33,代码来源:elbow_template.py


示例19: templateDataClustering

 def templateDataClustering(self, sample_path,
                                  amount_clusters,
                                  chromosome_count,
                                  population_count,
                                  count_mutation_gens,
                                  coeff_mutation_count,
                                  expected_clusters_sizes):
     testing_result = False
     
     for _ in range(3):
         sample = read_sample(sample_path)
         
         ga_instance = genetic_algorithm(sample, amount_clusters, chromosome_count, population_count,
                                         count_mutations_gen=count_mutation_gens,
                                         coeff_mutation_count=coeff_mutation_count)
         
         ga_instance.process()
         clusters = ga_instance.get_clusters()
         
         obtained_cluster_sizes = [len(cluster) for cluster in clusters]
         if len(sample) != sum(obtained_cluster_sizes):
             continue
         
         if expected_clusters_sizes is not None:
             obtained_cluster_sizes.sort()
             expected_clusters_sizes.sort()
             if obtained_cluster_sizes != expected_clusters_sizes:
                 continue
         
         testing_result = True
         break
     
     assert testing_result is True
开发者ID:annoviko,项目名称:pyclustering,代码行数:33,代码来源:ut_ga.py


示例20: templateLengthProcessData

    def templateLengthProcessData(input_sample, start_centers, expected_cluster_length, type_splitting, kmax, ccore):
        if isinstance(input_sample, str):
            sample = read_sample(input_sample)
        else:
            sample = input_sample
        
        #clusters = xmeans(sample, start_centers, 20, ccore);
        xmeans_instance = xmeans(sample, start_centers, kmax, 0.025, type_splitting, ccore)
        xmeans_instance.process()
         
        clusters = xmeans_instance.get_clusters()
        centers = xmeans_instance.get_centers()
    
        obtained_cluster_sizes = [len(cluster) for cluster in clusters]

        assert len(sample) == sum(obtained_cluster_sizes);
        assert len(clusters) == len(centers);
        assert len(centers) <= kmax;
        
        if expected_cluster_length is not None:
            assert len(centers) == len(expected_cluster_length);

            obtained_cluster_sizes.sort()
            expected_cluster_length.sort()
            
            assert obtained_cluster_sizes == expected_cluster_length;
开发者ID:annoviko,项目名称:pyclustering,代码行数:26,代码来源:xmeans_templates.py



注:本文中的pyclustering.utils.read_sample函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python utils.timedcall函数代码示例发布时间:2022-05-25
下一篇:
Python som_templates.SomTestTemplates类代码示例发布时间:2022-05-25
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap