本文整理汇总了Python中pybrain.tools.customxml.networkreader.NetworkReader类的典型用法代码示例。如果您正苦于以下问题:Python NetworkReader类的具体用法?Python NetworkReader怎么用?Python NetworkReader使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了NetworkReader类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: runThirdStageClassifier
def runThirdStageClassifier(self):
out = []
true = []
#SingleBatIDToAdd = [1, 2, 3, 5, 6] # for single
Correct = 0
print "Loading Network.."
net = NetworkReader.readFrom("C:\Users\Anoch\PycharmProjects\BatClassification\ThirdStageClassifier.xml")
print "Loading feature data with SSC = 1 (Single call type)"
minFreq, maxFreq, Durantion, fl1, fl2, fl3, fl4, fl5, fl6, fl7, fl8, fl9, fl10, pixelAverage, target, path = self.getDistrubedTestDataRUNVERSIONTSC()
SAMPLE_SIZE = len(minFreq)
for i in range(0, SAMPLE_SIZE):
ClassifierOutput= net.activate([minFreq[i], maxFreq[i], Durantion[i], fl1[i], fl2[i], fl3[i], fl4[i], fl5[i], fl6[i], fl7[i], fl8[i], fl9[i], fl10[i], pixelAverage[i]])
ClassifierOutputID = np.argmax(ClassifierOutput)
currentTarget = self.convertIDSingleTSC(target[i])
out.append(ClassifierOutputID)
true.append(currentTarget)
#MAPPING FROM BATID TO TSC value:
TSC_value = ClassifierOutputID
# Metadata Setup, get path and write: TSC = value
ds = self.HDFFile[path[i]]
ds.attrs["TSC"] = TSC_value
self.HDFFile.flush()
self.ConfusionMatrix = self.CorrectRatio(out, true)
return self.ConfusionMatrix
开发者ID:AnochjhnIruthayam,项目名称:BatClassification,代码行数:26,代码来源:ClassifierConnected.py
示例2: __init__
def __init__(self, loadWeightsFromFile, filename):
#neural network as function approximator
#Initialize neural network
if loadWeightsFromFile:
self.nn = NetworkReader.readFrom(filename)
else:
self.nn = buildNetwork(NODE_INPUT, NODE_HIDDEN, NODE_OUTPUT, bias = True)
开发者ID:DiNAi,项目名称:nn2014-RL-atari,代码行数:7,代码来源:agent.py
示例3: buildNet
def buildNet(self):
print "Building a network..."
if os.path.isfile(self.path):
self.trained = True
return NetworkReader.readFrom(self.path)
else:
return buildNetwork(self.all_data.indim, self.d[self.path]['hidden_dim'], self.all_data.outdim, outclass=SoftmaxLayer)
开发者ID:davidlavy88,项目名称:FaceIdentifier,代码行数:7,代码来源:identify.py
示例4: runClassifier
def runClassifier(self):
out = []
true = []
#BatIDToAdd = [1, 2, 3, 5, 6, 10, 11, 12, 14, 8, 9] #1-14 are bats; 8 is noise; 9 is something else
print "Loading Network.."
net = NetworkReader.readFrom("SecondStageClassifier.xml")
print "Loading feature data with FSC = 1 (Bat calls)"
minFreq, maxFreq, Durantion, fl1, fl2, fl3, fl4, fl5, fl6, fl7, fl8, fl9, fl10, pixelAverage, target, path = self.getDistrubedTestDataRUNVERSION()
SAMPLE_SIZE = len(minFreq)
for i in range(0, SAMPLE_SIZE):
ClassifierOutput = net.activate([minFreq[i], maxFreq[i], Durantion[i], fl1[i], fl2[i], fl3[i], fl4[i], fl5[i], fl6[i], fl7[i], fl8[i], fl9[i], fl10[i], pixelAverage[i]])
ClassifierOutputID = np.argmax(ClassifierOutput)
currentTarget = self.convertIDMultiSingle(target[i])
out.append(ClassifierOutputID)
true.append(currentTarget)
#MAPPING FROM BATID TO TSC value:
SSC_value = ClassifierOutputID
# Metadata Setup, get path and write: TSC = value
ds = self.HDFFile[path[i]]
ds.attrs["SSC"] = SSC_value
# Close HDF5 file to save to disk. This is also done to make sure the next stage classifier can open the file
self.HDFFile.flush()
self.HDFFile.close()
self.ConfusionMatrix = self.CorrectRatio(out, true)
return self.ConfusionMatrix
开发者ID:AnochjhnIruthayam,项目名称:BatClassification,代码行数:25,代码来源:ClassifierSecondStage.py
示例5: getPersistedData
def getPersistedData(self, name):
pathToData = self.relPathFromFilename(name)
if os.path.isfile(pathToData):
with open(pathToData, "rb") as f:
data = pickle.load(f)
if name == NEURAL_NET_DUMP_NAME:
data.net = NetworkReader.readFrom(self.relPathFromFilename(name + DATA_DUMP_NN_EXT))
return data
开发者ID:TanaySinghal,项目名称:SPCSAISelfDrivingCar,代码行数:8,代码来源:learning.py
示例6: testNets
def testNets():
ds = SupervisedDataSet.loadFromFile('SynapsemonPie/boards')
net20 = NetworkReader.readFrom('SynapsemonPie/synapsemon_primer20.xml')
net50 = NetworkReader.readFrom('SynapsemonPie/synapsemon_primer50.xml')
net80 = NetworkReader.readFrom('SynapsemonPie/synapsemon_primer80.xml')
net110 = NetworkReader.readFrom('SynapsemonPie/synapsemon_primer110.xml')
net140 = NetworkReader.readFrom('SynapsemonPie/synapsemon_primer140.xml')
trainer20 = BackpropTrainer(net20, ds)
trainer50 = BackpropTrainer(net50, ds)
trainer80 = BackpropTrainer(net80, ds)
trainer110 = BackpropTrainer(net110, ds)
trainer140 = BackpropTrainer(net140, ds)
print trainer20.train()
print trainer50.train()
print trainer80.train()
print trainer110.train()
print trainer140.train()
开发者ID:johnny-zheng,项目名称:SynapsemonPy,代码行数:17,代码来源:primer_evaluation.py
示例7: main
def main():
train_file = 'data/train.csv'
# validation_file = 'data/validation.csv'
output_model_file = 'model.xml'
# hidden_size = 4
epochs = 500
# load data
# def loadData():
train = np.loadtxt(train_file, delimiter=' ')
Input = train[0:,0:3]
Output = train[0:,3:5]
# validation = np.loadtxt(validation_file, delimiter=',')
# train = np.vstack((train, validation))
# x_train = train[:, 0:-1]
# y_train = train[:, -1]
# y_train = y_train.reshape(-1, 1)
# input_size = x_train.shape[1]
# target_size = y_train.shape[1]
# prepare dataset
# def prepare dataset(input_size, target_size):
ds = SDS(Input,Output)
# ds.addSample(input_size)
# ds.setField('input', x_train)
# ds.setField('target', y_train)
# init and train
# def initTrain(input_size, hidden_size, input, output):
# net = buildNetwork(input_size, hidden_size, target_size, bias=True)
net = buildNetwork(3, # input layer
4, # hidden0
2, # output
hiddenclass=SigmoidLayer,
outclass=SigmoidLayer,
bias=True
)
net = NetworkReader.readFrom('model.xml')
for i,o in zip(Input,Output):
ds.addSample(i,o)
print i, o
trainer = BackpropTrainer(net, ds)
print "training for {} epochs...".format(epochs)
for i in range(epochs):
mse = trainer.train()
rmse = sqrt(mse)
print "training RMSE, epoch {}: {}".format(i + 1, rmse)
if os.path.isfile("../stopfile.txt") == True:
break
NetworkWriter.writeToFile(net, output_model_file)
开发者ID:amaneureka,项目名称:iResQ,代码行数:58,代码来源:train.py
示例8: __init__
def __init__(self):
print "start a new instance"
self.loaded=False
self.has_data_source=False
try:
self.net=NetworkReader.readFrom('pickled_ANN')
print "ANN has been found from an ash jar"
self.loaded=True
except IOError:
print "ash jar is empty, use train() to start a new ANN"
开发者ID:lkong,项目名称:Pickle_ANN,代码行数:10,代码来源:NetFlow_ANN.py
示例9: nfq_action_value
def nfq_action_value(network_fname, state=[0, 0, 0, 0, 0]):
# TODO generalize away from 9 action values. Ask the network how many
# discrete action values there are.
n_actions = 9
network = NetworkReader.readFrom(network_fname)
actionvalues = np.empty(n_actions)
for i_action in range(n_actions):
network_input = r_[state, one_to_n(i_action, n_actions)]
actionvalues[i_action] = network.activate(network_input)
return actionvalues
开发者ID:chrisdembia,项目名称:agent-bicycle,代码行数:10,代码来源:analysis.py
示例10: exoplanet_search
def exoplanet_search(self,
find=default_find):
"""
This method searches for exoplanets.
The output will have the format:
(exostar1_streak, exostar2_streak, ...)
where an exostar is a star with an exoplanet, and a streak is
a list of states in which the exostar was observed to have exoplanetary
behaviour.
At least 5 stars must be tracked.
"""
stars, deleted = self.find_objects(find=find)
print str(deleted / len(self.photos)) + "% of the data was ignored"
"""
There must be an integer multiple of 5 stars
in stars, and the stars must be grouped together in lumps
of 5.
"""
exostreaks = []
net = NetworkReader.readFrom("../../Identifier/network.xml")
for starnum in range(0, len(stars), 5):
search_stars = stars[starnum: starnum + 5]
start_time = search_stars[0].states[0].time
stop_time = search_stars[0].states[-1].time
for photonum in range(start_time, stop_time + 1, 10):
print self.photos[photonum]
photonum = min(photonum, stop_time - 10)
intensities = []
for slide in range(photonum, photonum + 10):
intensities.append([])
photo = self.photos[slide]
photo.load()
for star in search_stars:
state = star.track(slide)
brightness = photo.intensity(state.position, state.radius)
intensities[-1].append(brightness)
photo.close()
inpt = []
for starothernum in range(5):
lightcurve = []
for slides_from_zero in range(10):
lightcurve.append(intensities[slides_from_zero][starothernum])
array_version = array(lightcurve)
array_version /= average(array_version)
inpt += list(array_version)
nnet_output = net.activate(tuple(inpt))
for o in range(5):
if nnet_output[o] > 0.5:
exostreak = []
for slide in range(photonum, photonum + 10):
state = search_stars[o].track(slide)
exostreak.append(state)
exostreaks.append(exostreak)
return exostreaks
开发者ID:Bushwallyta271828,项目名称:StarTracker,代码行数:54,代码来源:extract.py
示例11: load_network_from_file
def load_network_from_file(self, filename):
"""Load Network from File
Using a NetworkWriter written file, data from the saved network
will be reconstituted into a new PathPlanningNetwork class.
This is used to load saved networks.
Arguments:
filename: The filename of the saved xml file.
"""
self._network = NetworkReader.readFrom(filename)
return
开发者ID:evansneath,项目名称:surgicalsim,代码行数:13,代码来源:network.py
示例12: __init__
def __init__(self, data, machineID, eta, lmda, netPath, input_size=30, epochs=20, train_str_index=1000, train_end_index=3000):
'''
Constructor
'''
self.data = data
self.machineID = machineID
self.eta = eta
self.lmda = lmda
self.INPUT_SIZE = input_size
self.epochs = epochs
self.str_train = train_str_index
self.end_train = train_end_index
self.net = NetworkReader.readFrom(netPath)
开发者ID:Manrich121,项目名称:ForecastingCloud,代码行数:13,代码来源:Rnn_model.py
示例13: trainNetwork
def trainNetwork():
print "[Training] Network has Started..."
inputSize = 0
with open('file1.txt', 'r') as f: #automatically closes file at the end of the block
#first_line = f.readline()
#inputSize = len(first_line)
dataset = SupervisedDataSet(4, 1) #specify size of data and target
f.seek(0) #Move back to beginnning of file
#iterate through the file. 1 picture per line
for line in f:
mylist = json.loads(line) #list object
target = mylist[-1] #retrieve and then delete the target classification
del mylist[-2:]
#print target
dataset.addSample(tuple(mylist), (target,))
#print json.loads(line)
if os.path.isfile('annModel.xml'):
skynet = NetworkReader.readFrom('annModel.xml')#for use if individual sample files used
else:
skynet = buildNetwork(dataset.indim, 8, dataset.outdim, bias=True, hiddenclass=TanhLayer) #input,hidden,output
#SoftmaxLayer, SigmoidLayer, LinearLayer, GaussianLayer
#Note hidden neuron number is arbitrary, can try 1 or 4 or 3 or 5 if this methods doesnt work out
trainer = BackpropTrainer(skynet, dataset,learningrate = 0.3, weightdecay = 0.01,momentum = 0.9)
#trainer.trainUntilConvergence()
for i in xrange(1000):
trainer.train()
#trainer.trainEpochs(1000)
#Save the now trained neural network
NetworkWriter.writeToFile(skynet,'annModel.xml')
print "[Network] has been Written"
################## SVM Method #######################
#Change append method in write method for target persistence
dataX = []
datay = []
with open(writeFile, 'r') as f:
for line in f:
mylist = json.loads(line)
target2 = mylist[-1]
dataX.append(mylist[:-2])
datay.append(target2)
#datay = [target2] * len(dataX) #Targets, size is n_samples, for use with indiviual sample files with same target
print [target2]
print dataX
print datay
clf = svm.LinearSVC()
clf.fit(dataX,datay)
#Persist the trained model
joblib.dump(clf,'svmModel.pkl')
开发者ID:phalax4,项目名称:illumination,代码行数:49,代码来源:writeUnit.py
示例14: __init__
def __init__(self, data, machineID, netPath, eta, lmda, input_size=30, epochs=20, train_str_index=1000, train_end_index=3000):
'''
Constructor
'''
self.cpuData = data[0]
self.memData = data[1]
self.machineID = machineID
self.eta = eta
self.lmda = lmda
self.INPUT_SIZE = input_size
self.epochs = epochs
self.str_train = train_str_index
self.end_train = train_end_index
self.net = NetworkReader.readFrom(netPath)
self.memForecasts = np.genfromtxt("d:/data/memory_fnn/"+machineID.replace("cpu", "memory"),delimiter=',').ravel()
开发者ID:Manrich121,项目名称:ForecastingCloud,代码行数:16,代码来源:Entwine_model.py
示例15: LoadNetwork
def LoadNetwork(self):
"""
Loading network dump from file.
"""
FCLogger.debug('Loading network from PyBrain xml-formatted file...')
net = None
if os.path.exists(self.networkFile):
net = NetworkReader.readFrom(self.networkFile)
FCLogger.info('Network loaded from dump-file: {}'.format(os.path.abspath(self.networkFile)))
else:
FCLogger.warning('{} - file with Neural Network configuration not exist!'.format(os.path.abspath(self.networkFile)))
self.network = net
开发者ID:chrinide,项目名称:FuzzyClassificator,代码行数:16,代码来源:PyBrainLearning.py
示例16: xforecast
def xforecast(self):
net = NetworkReader.readFrom('xtrainedinfo.xml')
activate_in = []
with open('xtraindata.csv') as tf:
xforecast = []
for line in tf:
data = [x for x in line.strip().split(',') if x]
for i in range(1, 10):
activate_in.append(float(data[i]))
# print activate_in
if float(net.activate((activate_in))) > 4.84e-06:
xforecast.append(2)
elif float(net.activate((activate_in))) > 3.5e-06:
xforecast.append(1)
else:
xforecast.append(0)
activate_in = []
return xforecast
开发者ID:casyazmon,项目名称:mars_city,代码行数:18,代码来源:xplot.py
示例17: perceptron
def perceptron(hidden_neurons=20, weightdecay=0.01, momentum=0.1):
INPUT_FEATURES = 200
CLASSES = 15
HIDDEN_NEURONS = hidden_neurons
WEIGHTDECAY = weightdecay
MOMENTUM = momentum
g = generate_data()
alldata = g['d']
testdata = generate_Testdata(g['index'])['d']
#tstdata, trndata = alldata.splitWithProportion(0.25)
#print type(tstdata)
trndata = _convert_supervised_to_classification(alldata,CLASSES)
tstdata = _convert_supervised_to_classification(testdata,CLASSES)
trndata._convertToOneOfMany()
tstdata._convertToOneOfMany()
#fnn = buildNetwork(trndata.indim, HIDDEN_NEURONS, trndata.outdim,outclass=SoftmaxLayer)
fnn = NetworkReader.readFrom('GCM(200+70.87).xml')
trainer = BackpropTrainer(fnn, dataset=trndata, momentum=MOMENTUM,verbose=True, weightdecay=WEIGHTDECAY,learningrate=0.01)
result = 0;
ssss = 0;
for i in range(1):
#trainer.trainEpochs(1)
trnresult = percentError(trainer.testOnClassData(),trndata['class'])
tstresult = percentError(trainer.testOnClassData(dataset=tstdata), tstdata['class'])
out = fnn.activateOnDataset(tstdata)
ssss = out
out = out.argmax(axis=1)
result = out
df = pd.DataFrame(ssss)
df.to_excel("GCMout.xls")
df = pd.DataFrame(result)
df.insert(1,'1',tstdata['class'])
df.to_excel("GCM.xls")
error = 0;
for i in range(len(tstdata['class'])):
if tstdata['class'][i] != result[i]:
error = error+1
#print (len(tstdata['class'])-error)*1.0/len(tstdata['class'])*100
print AAC(result,tstdata['class'])
print AUC(np.transpose(tstdata['class'])[0],result.transpose())
print Fscore(np.transpose(tstdata['class'])[0],result.transpose())
NetworkWriter.writeToFile(fnn, 'GCM.xml')
开发者ID:Guosmilesmile,项目名称:pythonstudy,代码行数:44,代码来源:GCMrf.py
示例18: improve_network
def improve_network(trainer=default_trainer, transit=default_transit):
"""
Author: Xander
This function improves an existing neural net
capable of detecting exoplanets in lightcurves.
It writes the network to network.xml
The input, output pairs should be of the
format generate() generates them in.
A good rule-of-thumb for telling whether the network detects an exoplanet
is to see if the output is above 0.5.
"""
print "Retreiving network..."
net = NetworkReader.readFrom("../network.xml")
print "Retreiving current performance..."
f = open("../network_info.txt")
first_line = f.readlines()[0]
best_fraction = float(first_line.split("%")[0])
f.close()
train_network(net, best_fraction, trainer=trainer, transit=transit)
开发者ID:Bushwallyta271828,项目名称:ClassifierNet,代码行数:19,代码来源:classifier.py
示例19: __init__
def __init__(self,df=0.9):
self.inputSize = 80
self.hiddenSize = 100
self.outputSize = 1
self.df = df
if (os.path.isfile("nn/neural-network.xml")):
##print("Loading Network from file")
self.net = NetworkReader.readFrom('nn/neural-network.xml')
self.ds = SupervisedDataSet(self.inputSize, self.outputSize)
self.loadDataSet()
self.trainer = BackpropTrainer(self.net, self.ds)
else:
print("Building Network")
self.net = buildNetwork(self.inputSize,self.hiddenSize,self.outputSize, bias=True)
self.ds = SupervisedDataSet(self.inputSize, self.outputSize)
self.loadDataSet()
self.trainer = BackpropTrainer(self.net, self.ds)
self.train()
self.saveNet()
开发者ID:vascobailao,项目名称:PYTHON,代码行数:20,代码来源:pyBrainNN.py
示例20: runFirstStageClassifier
def runFirstStageClassifier(self):
out = []
true = []
BatIDToAdd = [1, 2, 3, 5, 6, 10, 11, 12, 14, 8, 9] #1-14 are bats; 8 is noise; 9 is something else
print "Loading Network.."
net = NetworkReader.readFrom("C:\Users\Anoch\PycharmProjects\BatClassification\FirstStageClassifier.xml")
print "Loading feature data..."
minFreq, maxFreq, Durantion, fl1, fl2, fl3, fl4, fl5, fl6, fl7, fl8, fl9, fl10, pixelAverage, target, path = self.getDistrubedTestDataRUNVERSIONFSC(BatIDToAdd)
SAMPLE_SIZE = len(minFreq)
for i in range(0, SAMPLE_SIZE):
ClassifierOutput = net.activate([minFreq[i], maxFreq[i], Durantion[i], fl1[i], fl2[i], fl3[i], fl4[i], fl5[i], fl6[i], fl7[i], fl8[i], fl9[i], fl10[i]])
ClassifierOutputID = np.argmax(ClassifierOutput)
currentTarget = self.convertIDFSC(target[i])
out.append(ClassifierOutputID)
true.append(currentTarget)
#MAPPING FROM BATID TO TSC value:
FSC_value = ClassifierOutputID
# Metadata Setup, get path and write: TSC = value
ds = self.HDFFile[path[i]]
ds.attrs["FSC"] = FSC_value
ds.attrs["SSC"] = -1
ds.attrs["TSC"] = -1
# Close HDF5 file to save to disk. This is also done to make sure the next stage classifier can open the file
self.HDFFile.flush()
开发者ID:AnochjhnIruthayam,项目名称:BatClassification,代码行数:24,代码来源:ClassifierConnected.py
注:本文中的pybrain.tools.customxml.networkreader.NetworkReader类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论