• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python customxml.NetworkWriter类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中pybrain.tools.customxml.NetworkWriter的典型用法代码示例。如果您正苦于以下问题:Python NetworkWriter类的具体用法?Python NetworkWriter怎么用?Python NetworkWriter使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了NetworkWriter类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: main

def main():
    start_time = time.time()
    novice = ArtificialNovice()
    genius = ArtificialGenius()
    game = HangmanGame(genius, novice)

    if __debug__:
        print "------------------- EVALUATION ------------------------"
        network = NetworkReader.readFrom("../IA/network_weight_1000.xml")
        j = 0
        while j < 1:
            game.launch(False, None, network)
            j += 1

        print ("--- %s total seconds ---" % (time.time() - start_time))
    else:
        print "------------------- LEARNING ------------------------"
        network = buildNetwork(3, 4, 1, hiddenclass=SigmoidLayer)
        ds = SupervisedDataSet(3, 1)
        i = 0
        while i < 100:
            game.launch(True, ds)
            i += 1

        print " INITIATE trainer : "
        trainer = BackpropTrainer(network, ds)
        print " START trainer : "
        start_time_trainer = time.time()
        trainer.train()
        print ("---  END trainer in % seconds ---" % (time.time() - start_time_trainer))
        print " START EXPORT network : "
        NetworkWriter.writeToFile(network, "../IA/network_weight_test_learning.xml")
        print " END EXPORT network : "
开发者ID:CelyaRousseau,项目名称:NaoHangman,代码行数:33,代码来源:main.py


示例2: run

def run(epochs, network_file, file_length, part_length, dominant_frequncies, show_graph, verbose_output):
	start_time = time.time()
	learner = dominant_freqs_learner.DominantFreqsLearner(file_length, part_length ,dominant_frequncies)
	all_files = get_all_split_files()
	if verbose_output:
		print 'started adding files to dataset at ' + time.ctime()

	for f in all_files:
		try:
			learner.add_split_file(f, channel=None, verbose=verbose_output)
		except:
			pass

	dataset_add_time = time.time() - start_time
	if verbose_output:
		print 'finished adding file to dataset at ' + time.ctime()

	errors = []
	learning_start_time = time.time()
	for epoch in range(epochs):
		error = learner.train_single_epoch()
		if verbose_output:
			print '{0}: epoch {1} : {2}'.format(time.ctime(), epoch, error)

		errors.append(error)

	learning_time = time.time() - learning_start_time
	NetworkWriter.writeToFile(learner._net, network_file)
	if show_graph:
		plot_graph(errors)

	return (errors, dataset_add_time, learning_time)
开发者ID:agadish,项目名称:HotC,代码行数:32,代码来源:dominant_freqs_runner.py


示例3: save_network

    def save_network(self,name_of_the_net):
        print "Saving the trained network to file"

        if self.network is None:
            print "Network has not been trained!!"
        else:
            NetworkWriter.writeToFile(self.network, name_of_the_net)
            print "Saving Finished"
开发者ID:DajeRoma,项目名称:clicc-flask,代码行数:8,代码来源:regression.py


示例4: train

 def train(self):
     print "Training"
     trndata, tstdata = self.ds.splitWithProportion(.1)
     self.trainer.trainUntilConvergence(verbose=True,
                                        trainingData=trndata,
                                        maxEpochs=1000)
     self.trainer.testOnData(tstdata, verbose= True)
     # if raw_input('Save Network?: y/n\n')=='y':
     NetworkWriter.writeToFile(self.net, 'Network1.xml')
     print 'Saving network'
开发者ID:nahtonaj,项目名称:neuralnetworkdrone,代码行数:10,代码来源:imageProcessing.py


示例5: main

def main():
    print "Calculating mfcc...."
    mfcc_coeff_vectors_dict = {}
    for i in range(1, 201):
        extractor = FeatureExtractor(
            '/home/venkatesh/Venki/FINAL_SEM/Project/Datasets/Happiness/HappinessAudios/' + str(i) + '.wav')
        mfcc_coeff_vectors = extractor.calculate_mfcc()
        mfcc_coeff_vectors_dict.update({str(i): (mfcc_coeff_vectors, mfcc_coeff_vectors.shape[0])})

    for i in range(201, 401):
        extractor = FeatureExtractor(
            '/home/venkatesh/Venki/FINAL_SEM/Project/Datasets/Sadness/SadnessAudios/' + str(i - 200) + '.wav')
        mfcc_coeff_vectors = extractor.calculate_mfcc()
        mfcc_coeff_vectors_dict.update({str(i): (mfcc_coeff_vectors, mfcc_coeff_vectors.shape[0])})

    audio_with_min_frames, min_frames = get_min_frames_audio(
        mfcc_coeff_vectors_dict)
    processed_mfcc_coeff = preprocess_input_vectors(
        mfcc_coeff_vectors_dict, min_frames)
    # frames = min_frames
    # print frames
    # print len(processed_mfcc_coeff['1'])
    # for each_vector in processed_mfcc_coeff['1']:
    #     print len(each_vector)
    print "mffcc found..."
    classes = ["happiness", "sadness"]

    training_data = ClassificationDataSet(
        26, target=1, nb_classes=2, class_labels=classes)
    # training_data = SupervisedDataSet(13, 1)
    try:
        network = NetworkReader.readFrom(
            'network_state_frame_level_new2_no_pp1.xml')
    except:
        for i in range(1, 51):
            mfcc_coeff_vectors = processed_mfcc_coeff[str(i)]
            for each_vector in mfcc_coeff_vectors:
                training_data.appendLinked(each_vector, [1])

        for i in range(201, 251):
            mfcc_coeff_vectors = processed_mfcc_coeff[str(i)]
            for each_vector in mfcc_coeff_vectors:
                training_data.appendLinked(each_vector, [0])

        training_data._convertToOneOfMany()
        print "prepared training data.."
        print training_data.indim, training_data.outdim
        network = buildNetwork(
            training_data.indim, 5, training_data.outdim, fast=True)
        trainer = BackpropTrainer(network, learningrate=0.01, momentum=0.99)
        print "Before training...", trainer.testOnData(training_data)
        trainer.trainOnDataset(training_data, 1000)
        print "After training...", trainer.testOnData(training_data)
        NetworkWriter.writeToFile(
            network, "network_state_frame_level_new2_no_pp.xml")
开发者ID:abhinavkashyap92,项目名称:sentitude,代码行数:55,代码来源:pybrain_frame_level_classifier.py


示例6: save_network

 def save_network(self,name_of_the_net):
     print "Saving the trained network to file"
     
     if self.network is None:
         print "Network has not been trained!!"
     else:
         NetworkWriter.writeToFile(self.network, name_of_the_net)
         fileName = name_of_the_net.replace('.xml','')
         fileName = fileName+'_testIndex.txt'
         np.savetxt(fileName,self.tstIndex)
         print "Saving Finished"
开发者ID:RunshengSong,项目名称:CLiCC_Packages,代码行数:11,代码来源:regression.py


示例7: nn_train

def nn_train(pvar,ovar,code,date1,date2,niter,np,nh):
    
    
    print "Doing Networ "+pvar+" "+ovar+" "+date1+" "+date2+" "+str(iter)
    

    # -----------------------    add samples   ------------------
    # get the training data
    print "adding training data "+pvar+" "
    file="eod_main.db"
    sqldir = os.path.join(datadir,"sql")
    sqlfile = os.path.join(sqldir,file)

    conn,cur=open_sql(sqlfile)
    d = rd_sql(cur,code,'AND date > "'+date1+'" AND date < "'+date2+'"')
    print "Read no of days "+str(len(d))

    if pvar == "basic8":
        print "calling nn_pp_basic8"
        pp = nn_pp_basic8(d,3,3)
    oclose,ohigh,olow,oclose_disc,o3day=nn_po_basic(d,3,3)
    if ovar == "close":
        po=oclose
    if ovar == "high":
        po=ohigh
    if ovar == "3day":
        po=o3day

    
    ds = SupervisedDataSet(np,1)
    for i in range(0,len(po)):
        ds.addSample(pp[i],po[i])

    # -----------------------    Build and Train   ------------------
    print "Training Network"
    net = buildNetwork(np,nh,1,hiddenclass=TanhLayer)
    trainer = BackpropTrainer(net,ds)
    xxx = trainer.trainUntilConvergence(maxEpochs=niter,validationProportion=0.01)
    #for n in range(0,niter):
    #    xxx=trainer.train(validationProportion=0.0)
    #    if n % 100 ==0:
    #        print "{} : {}".format(n,xxx)

        
    # --------------     Save network parameters   ------------------
    print "Saving Network"
    netdir2 = os.path.join(basedir,"inv")
    netdir = os.path.join(netdir2,"analyse")
    netfile = os.path.join(netdir,'net_'+pvar+'_'+ovar+'_'+date1+'_'+date1+'_'+str(niter)+'.xml')
    NetworkWriter.writeToFile(net, netfile)
    
    return
开发者ID:kizombakid,项目名称:inv,代码行数:52,代码来源:nn_train.py


示例8: neuralNet

def neuralNet(info, test_data):
    ann = FeedForwardNetwork()
    
    ''' 
        Initiate the input nodes, hidden layer nodes,
        and the output layer nodes.
    '''
    inputLayer = LinearLayer(5)
    hiddenLayer = SigmoidLayer(20) 
    outputLayer = LinearLayer(1)
    
    '''
        Add the nodes to the corresponding layer
    '''
    ann.addInputModule(inputLayer)
    ann.addModule(hiddenLayer)
    ann.addOutputModule(outputLayer)
    
    '''
        Connect the input layer to hidden layer,
        then connect hidden layer to output layer
    '''
    in_to_hidden = FullConnection(inputLayer, hiddenLayer)
    hidden_to_out = FullConnection(hiddenLayer, outputLayer)
    
    ann.addConnection(in_to_hidden)
    ann.addConnection(hidden_to_out)
    
    ann.sortModules ()
    
    data_set = SupervisedDataSet(5, 1)
    for data in info:
        data_set.addSample(data[:-1], data[-1])
    trainer = BackpropTrainer(ann, data_set, verbose=False)
    
    #test_data, train_data = data_set.splitWithProportion(0.2)
    train_data = data_set
    test_data = test_data
    '''
        Using 50 epochs for testing purposes, it will train
        the network until convergence within the first 50 epochs
    
    '''
    train = trainer.trainUntilConvergence(dataset=train_data, maxEpochs=10)
    NetworkWriter.writeToFile(ann, 'filename5.xml')
    
    for d in test_data:
        out = ann.activate(d)
        #print (train)
        print (out) 
        
    '''
开发者ID:TeamBall,项目名称:CapstoneProject,代码行数:52,代码来源:neuralNetwork.py


示例9: main

def main():
    print "Calculating mfcc...."
    mfcc_coeff_vectors_dict = {}
    for i in range(1, 201):
        extractor = FeatureExtractor('/home/venkatesh/Venki/FINAL_SEM/Project/Datasets/Happiness/HappinessAudios/' + str(i) + '.wav')
        mfcc_coeff_vectors = extractor.calculate_mfcc()
        mfcc_coeff_vectors_dict.update({str(i): (mfcc_coeff_vectors, mfcc_coeff_vectors.shape[0])})

    for i in range(201, 401):
        extractor = FeatureExtractor('/home/venkatesh/Venki/FINAL_SEM/Project/Datasets/Sadness/SadnessAudios/' + str(i - 200) + '.wav')
        mfcc_coeff_vectors = extractor.calculate_mfcc()
        mfcc_coeff_vectors_dict.update({str(i): (mfcc_coeff_vectors, mfcc_coeff_vectors.shape[0])})

    audio_with_min_frames, min_frames = get_min_frames_audio(mfcc_coeff_vectors_dict)
    processed_mfcc_coeff = preprocess_input_vectors(mfcc_coeff_vectors_dict, min_frames)
    frames = min_frames
    print "mfcc found...."
    classes = ["happiness", "sadness"]
    try:
        network = NetworkReader.readFrom('network_state_new_.xml')
    except:
        # Create new network and start Training
        training_data = ClassificationDataSet(frames * 26, target=1, nb_classes=2, class_labels=classes)
        # training_data = SupervisedDataSet(frames * 39, 1)
        for i in range(1, 151):
            mfcc_coeff_vectors = processed_mfcc_coeff[str(i)]
            training_data.appendLinked(mfcc_coeff_vectors.ravel(), [1])
            # training_data.addSample(mfcc_coeff_vectors.ravel(), [1])

        for i in range(201, 351):
            mfcc_coeff_vectors = processed_mfcc_coeff[str(i)]
            training_data.appendLinked(mfcc_coeff_vectors.ravel(), [0])
            # training_data.addSample(mfcc_coeff_vectors.ravel(), [0])

        training_data._convertToOneOfMany()
        network = buildNetwork(training_data.indim, 5, training_data.outdim)
        trainer = BackpropTrainer(network, learningrate=0.01, momentum=0.99)
        print "Before training...", trainer.testOnData(training_data)
        trainer.trainOnDataset(training_data, 1000)
        print "After training...", trainer.testOnData(training_data)
        NetworkWriter.writeToFile(network, "network_state_new_.xml")

    print "*" * 30 , "Happiness Detection", "*" * 30
    for i in range(151, 201):
        output = network.activate(processed_mfcc_coeff[str(i)].ravel())
        # print output,
        # if output > 0.7:
        #     print "happiness"
        class_index = max(xrange(len(output)), key=output.__getitem__)
        class_name = classes[class_index]
        print class_name
开发者ID:abhinavkashyap92,项目名称:sentitude,代码行数:51,代码来源:pybrain_learning.py


示例10: dump

    def dump(self, dirPath):
        """
        Save a representation of this classifier and it's network at the given path.
        """
        if os.path.isdir(dirPath) and os.listdir(dirPath):
            raise IOError("The directory exists and is not empty: {}".format(dirPath))
        util.mkdir_p(dirPath)

        #save network
        NetworkWriter.writeToFile(self.net, os.path.join(dirPath, self._NET_NAME))

        #save classifier
        with open(os.path.join(dirPath, self._CLASSIFIER_NAME), 'w') as f:
            f.write(serializer.dump(self))
开发者ID:ForeverWintr,项目名称:ImageClassipy,代码行数:14,代码来源:classifier.py


示例11: save

 def save(self, filename):
     tmpfile = filename + '~net~'
     NetworkWriter.writeToFile(self.net, tmpfile)
     with open(tmpfile, 'rb') as f:
         network_data = f.read()
     os.unlink(tmpfile)
     with open(filename + '~', 'wb') as f:
         out = pickle.Pickler(f)
         out.dump( (const.PWINDOW, self.window) )
         out.dump( (const.PSIZE, self.size) )
         out.dump( (const.PRATIO, self.ratio) )
         out.dump( (const.PMULTIPLIER, self.multiplier) )
         out.dump( (const.PNETWORK, network_data) )
         f.flush()
     os.rename(filename + '~', filename)
开发者ID:majek,项目名称:transfer,代码行数:15,代码来源:network.py


示例12: xmlInvariance

def xmlInvariance(n, forwardpasses = 1):
    """ try writing a network to an xml file, reading it, rewrite it, reread it, and compare
    if the result looks the same (compare string representation, and forward processing
    of some random inputs) """
    # We only use this for file creation.
    tmpfile = tempfile.NamedTemporaryFile(dir='.')
    f = tmpfile.name
    tmpfile.close()

    NetworkWriter.writeToFile(n, f)
    tmpnet = NetworkReader.readFrom(f)
    NetworkWriter.writeToFile(tmpnet, f)
    endnet = NetworkReader.readFrom(f)

    # Unlink temporary file.
    os.unlink(f)

    netCompare(tmpnet, endnet, forwardpasses, True)
开发者ID:Boblogic07,项目名称:pybrain,代码行数:18,代码来源:helpers.py


示例13: neural_train

def neural_train(filename, testfile, output):
    tag, data = readfile(filename)
    testtag, testdata = readfile(testfile)
    net = buildNetwork(len(data[0]), 80, 10)
    ds = SupervisedDataSet(len(data[0]), 10)
    for x in range(0, len(data)):
        ds.addSample(data[x], trans(tag[x]))
    testds = SupervisedDataSet(len(data[0]), 10)
    for x in range(0, len(testdata)):
        testds.addSample(testdata[x], trans(testtag[x]))
    trainer = BackpropTrainer(net, ds, learningrate = 0.001, momentum = 0.99)
    print "training..."
    trainer.trainUntilConvergence(verbose=True,
                              trainingData=ds,
                              validationData=testds,
                              maxEpochs=500)
    print "done"
    NetworkWriter.writeToFile(net, output)
开发者ID:YueDayu,项目名称:AdvancedDataStructureProj2,代码行数:18,代码来源:NN_training.py


示例14: main

def main():

	start_time = time.time()

	dataModel = [
	    [(0,0,0), (1,0,0,0,0,0,0,0)],
	    [(0,0,1), (0,1,0,0,0,0,0,0)],
	    [(0,1,0), (0,0,1,0,0,0,0,0)],
	    [(0,1,1), (0,0,0,1,0,0,0,0)],
	    [(1,0,0), (0,0,0,0,1,0,0,0)],
	    [(1,0,1), (0,0,0,0,0,1,0,0)],
	    [(1,1,0), (0,0,0,0,0,0,1,0)],
	    [(1,1,1), (0,0,0,0,0,0,0,1)],
	]

	ds = SupervisedDataSet(3, 8)
	 
	for input, target in dataModel:
	    ds.addSample(input, target)

	# create a large random data set
	random.seed()
	trainingSet = SupervisedDataSet(3, 8);
	for ri in range(0,2000):
	    input,target = dataModel[random.getrandbits(3)];
	    trainingSet.addSample(input, target)

	net = buildNetwork(3, 8, 8, bias=True)

	trainer = BackpropTrainer(net, ds, learningrate = 0.001)
	for i in range(10):

		trainer.trainUntilConvergence(verbose=True,
		                              trainingData=trainingSet,
		                              validationData=ds,
		                              maxEpochs=1)

		NetworkWriter.writeToFile(net, 'savedNeuralNets/trainedNet'+str(i)+'.xml')

	print("The Program took %s seconds to run" % (time.time() - start_time))
开发者ID:nasgold,项目名称:rounder,代码行数:40,代码来源:exampleNeuralNetwork.py


示例15: trainNetwork

def trainNetwork(dirname):
    numFeatures = 5000
    ds = SequentialDataSet(numFeatures, 1)
    
    tracks = glob.glob(os.path.join(dirname, 'train??.wav'))
    for t in tracks:
        track = os.path.splitext(t)[0]
        # load training data
        print "Reading %s..." % track
        data = numpy.genfromtxt(track + '_seg.csv', delimiter=",")
        labels = numpy.genfromtxt(track + 'REF.txt', delimiter='\t')[0::10,1]
        numData = data.shape[0]

        # add the input to the dataset
        print "Adding to dataset..."
        ds.newSequence()
        for i in range(numData):
            ds.addSample(data[i], (labels[i],))
    
    # initialize the neural network
    print "Initializing neural network..."
    net = buildNetwork(numFeatures, 50, 1,
                       hiddenclass=LSTMLayer, outputbias=False, recurrent=True)
    
    # train the network on the dataset
    print "Training neural net"
    trainer = RPropMinusTrainer(net, dataset=ds)
##    trainer.trainUntilConvergence(maxEpochs=50, verbose=True, validationProportion=0.1)
    error = -1
    for i in range(100):
        new_error = trainer.train()
        print "error: " + str(new_error)
        if abs(error - new_error) < 0.1: break
        error = new_error

    # save the network
    print "Saving neural network..."
    NetworkWriter.writeToFile(net, os.path.basename(dirname) + 'net')
开发者ID:tediris,项目名称:MusicML,代码行数:38,代码来源:trainer.py


示例16: main

def main():

	start_time = time.time()

	dataModel = createTheDataModel([2,5,9,15])

	trainingSet = SupervisedDataSet(228, 1)
	for input, target in dataModel:
	    trainingSet.addSample(input, target)


	net = buildNetwork(228, 220, 1, bias=True)

	numberOfEpochsToTrainFor = 2
	for epochNumber in range(1, 3):
		trainer = BackpropTrainer(net, trainingSet)
		trainer.trainEpochs(2)

		NetworkWriter.writeToFile(net, 'savedNeuralNets/trainedNet1-epoch' + str(epochNumber * numberOfEpochsToTrainFor) + '.xml')


	seconds = str(int(time.time() - start_time))
	print("The Program took %s seconds to run" % (seconds))
开发者ID:nasgold,项目名称:rounder,代码行数:23,代码来源:trainNeuralNetwork.py


示例17: entrenarO

def entrenarO(red):
    #Se inicializa el dataset
    ds = SupervisedDataSet(4096,1)

    """Se crea el dataset, para ello procesamos cada una de las imagenes obteniendo las figuras,
       luego se le asignan los valores deseados del resultado la red neuronal."""

    print "O  - Figura"
    for i,c in enumerate(os.listdir(os.path.dirname('C:\\Users\\LuisD\\Desktop\\Reconocimiento\\prueba/'))):
        try:
            im = cv2.imread('C:\\Users\\LuisD\\Desktop\\Reconocimiento\\prueba/'+c)
            cv2.resize(im,(64,64))
            pim = pi.ProcesarImagen(im)
            ds.appendLinked(pim.flatten(),10)
        except:
            pass

    print len(ds)
    print i,c

    trainer = BackpropTrainer(red, ds)
    print "Entrenando hasta converger"
    trainer.trainUntilConvergence()
    NetworkWriter.writeToFile(red, 'rna_o.xml')
开发者ID:FEnoR,项目名称:3RT,代码行数:24,代码来源:EntrenarRedneuronal.py


示例18: BackpropTrainer

t = BackpropTrainer(n, learningrate = 0.01 ,
                    momentum = mom)
#train the neural network from the train DataSet

cterrori=1.0
print "trainer momentum:"+str(mom)
for iter in range(25):
  t.trainOnDataset(trndata, 1000)
  ctrndata = mv.calculateModuleOutput(n,trndata)
  cterr = v.MSE(ctrndata,trndata['target'])
  relerr = abs(cterr-cterrori)
  cterrori = cterr
  print 'iteration:',iter+1,'MSE error:',cterr
  myplot(trndata,ctrndata,iter=iter+1)
  if cterr < 1.e-5 or relerr < 1.e-7:
    break
#write the network using xml file     
myneuralnet = os.path.join(os.getcwd(),'myneuralnet.xml')
if os.path.isfile(myneuralnet):
    NetworkWriter.appendToFile(n,myneuralnet)
else:
    NetworkWriter.writeToFile(n,myneuralnet)
    
#calculate the test DataSet based on the trained Neural Network
ctsts = mv.calculateModuleOutput(n,tsts)
tserr = v.MSE(ctsts,tsts['target'])
print 'MSE error on TSTS:',tserr
myplot(trndata,ctrndata,tsts,ctsts)

pylab.show()
开发者ID:Boblogic07,项目名称:pybrain,代码行数:30,代码来源:jpq2layersWriter.py


示例19: zip

            vals.append(float(n.activate(x)))

        error = 0.0
        num = 0.0;
        for o, t in zip(vals, prediction_outputs):
            if abs(t - o) < 10:
                error += abs(t - o)
                num = num + 1

        error = error / num

        if error < local_min_error:
            local_min_error = error

        if error < min_error and num >= 16:
            NetworkWriter.writeToFile(n, "20 prediction games with num = 16.xml")
            min_error = error
            num_n = num
            min_vals = []
            for x in vals:
                x = float(x)
                min_vals.append(x)

        print("\n")
        for x in vals:
            print x
        print("\n")
        print(min_error)
        print(num_n)
        print("\n")
        for x in min_vals:
开发者ID:KendallWeihe,项目名称:PyBrain-NN-for-regression,代码行数:31,代码来源:main.py


示例20: buildNetwork

# split up training data for cross validation
print "Split data into training and test sets..."

net = buildNetwork(200, 134, 2, bias=True, outclass=SoftmaxLayer)
trainer = BackpropTrainer(net, dataset=trndata)
print "training for {} epochs..."

trainer.trainUntilConvergence( verbose = True, validationProportion = 0.15, maxEpochs = 1000, continueEpochs = 10 )



trnresult = percentError( trainer.testOnClassData(),trndata['class'] )
tstresult = percentError( trainer.testOnClassData(dataset=tstdata ), tstdata['class'] )

print "epoch: %4d" % trainer.totalepochs,"  train error: %5.2f%%" % trnresult,           "  test error: %5.2f%%" % tstresult
NetworkWriter.writeToFile(net, 'oliv-x2-80.xml')


# predict using test data
# print "Making predictions..."
# ypreds = []
# ytrues = []
# for i in range(Xtest.getLength()]):
    # pred = fnn.activate(getSample(i)[0])
    # ypreds.append(pred.argmax())
    # ytrues.append(ytest[i])
# print "Accuracy on test set: %7.4f" % accuracy_score(ytrues, ypreds, 
                                                     # normalize=True)


	
开发者ID:thak123,项目名称:IASNLP-2016,代码行数:28,代码来源:nn-supervised.py



注:本文中的pybrain.tools.customxml.NetworkWriter类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python networkreader.NetworkReader类代码示例发布时间:2022-05-25
下一篇:
Python customxml.NetworkReader类代码示例发布时间:2022-05-25
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap