本文整理汇总了Python中theano.tensor.mul函数的典型用法代码示例。如果您正苦于以下问题:Python mul函数的具体用法?Python mul怎么用?Python mul使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了mul函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: beta_div
def beta_div(X, W, H, beta):
"""Compute beta divergence D(X|WH)
Parameters
----------
X : Theano tensor
data
W : Theano tensor
Bases
H : Theano tensor
activation matrix
beta : Theano scalar
Returns
-------
div : Theano scalar
beta divergence D(X|WH)"""
div = ifelse(
T.eq(beta, 2),
T.sum(1. / 2 * T.power(X - T.dot(H, W), 2)),
ifelse(
T.eq(beta, 0),
T.sum(X / T.dot(H, W) - T.log(X / T.dot(H, W)) - 1),
ifelse(
T.eq(beta, 1),
T.sum(T.mul(X, (T.log(X) - T.log(T.dot(H, W)))) + T.dot(H, W) - X),
T.sum(1. / (beta * (beta - 1.)) * (T.power(X, beta) +
(beta - 1.) * T.power(T.dot(H, W), beta) -
beta * T.power(T.mul(X, T.dot(H, W)), (beta - 1)))))))
return div
开发者ID:rserizel,项目名称:beta_nmf,代码行数:31,代码来源:costs.py
示例2: beta_H_groupSparse
def beta_H_groupSparse(X, W, H, beta, l_sp, start, stop):
"""Update activation with beta divergence
Parameters
----------
X : Theano tensor
data
W : Theano tensor
Bases
H : Theano tensor
activation matrix
beta : Theano scalar
Returns
-------
H : Theano tensor
Updated version of the activations
"""
results, _ = theano.scan(fn=lambda start_i, stop_i, prior_results, H:
T.set_subtensor(
prior_results[:, start_i:stop_i].T,
H[:, start_i:stop_i].T /
H[:, start_i:stop_i].norm(2, axis=1)).T,
outputs_info=T.zeros_like(H),
sequences=[start, stop],
non_sequences=H)
cst = results[-1]
up = ifelse(T.eq(beta, 2), (T.dot(X, W)) / (T.dot(T.dot(H, W.T), W) +
l_sp * cst),
(T.dot(T.mul(T.power(T.dot(H, W.T),
(beta - 2)), X), W)) /
(T.dot(T.power(T.dot(H, W.T), (beta-1)), W) +
l_sp * cst))
return T.mul(H, up)
开发者ID:mikimaus78,项目名称:groupNMF,代码行数:34,代码来源:updates.py
示例3: t_forward_step
def t_forward_step(self, mask, cur_w_in_sig, pre_out_sig, pre_cell_sig, w_ifco, b_ifco,ln_b1,ln_s1, ln_b2,ln_s2,ln_b3,ln_s3,
t_n_out):
cur_w_in_sig_ln = self.ln(cur_w_in_sig, ln_b1, ln_s1)
pre_w_out_sig = T.dot(pre_out_sig, w_ifco)
pre_w_out_sig_ln = self.ln(pre_w_out_sig, ln_b2, ln_s2)
preact = T.add(cur_w_in_sig_ln, pre_w_out_sig_ln, b_ifco)
inner_act = self.activation # T.nnet.hard_sigmoid #T.tanh # T.nnet.hard_sigmoid T.tanh
gate_act = self.sigmoid() # T.nnet.hard_sigmoid #T.nnet.sigmoid
# Input Gate
ig_t1 = gate_act(preact[:, 0:t_n_out])
# Forget Gate
fg_t1 = gate_act(preact[:, 1 * t_n_out:2 * t_n_out])
# Cell State
cs_t1 = T.add(T.mul(fg_t1, pre_cell_sig), T.mul(ig_t1, inner_act(preact[:, 2 * t_n_out:3 * t_n_out])))
mask = T.addbroadcast(mask, 1)
cs_t1 = mask * cs_t1 + (1. - mask) * pre_cell_sig
cs_t1_ln = self.ln(cs_t1, ln_b3, ln_s3)
# Output Gate
og_t1 = gate_act(preact[:, 3 * t_n_out:4 * t_n_out])
# Output LSTM
out_sig = T.mul(og_t1, inner_act(cs_t1_ln))
out_sig = mask * out_sig + (1. - mask) * pre_out_sig
return [out_sig, cs_t1]
开发者ID:dzungcamlang,项目名称:recnet,代码行数:34,代码来源:ln_reccurent_layer.py
示例4: t_forward_step
def t_forward_step(self, mask, cur_w_in_sig, pre_out_sig, pre_cell_sig, w_ifco, b_ifco,
t_n_out):
ifco = T.add(T.dot(pre_out_sig, w_ifco), b_ifco)
inner_act = self.activation
gate_act = self.sigmoid()
# Input Gate
ig_t1 = gate_act(T.add(ifco[:, 0:t_n_out], cur_w_in_sig[:, 0:t_n_out]))
# Forget Gate
fg_t1 = gate_act(T.add(ifco[:, 1 * t_n_out:2 * t_n_out],
cur_w_in_sig[:, 1 * t_n_out:2 * t_n_out]))
# Cell State
cs_t1 = T.add(T.mul(fg_t1, pre_cell_sig), T.mul(ig_t1, inner_act(
T.add(ifco[:, 2 * t_n_out:3 * t_n_out], cur_w_in_sig[:, 2 * t_n_out:3 * t_n_out]))))
mask = T.addbroadcast(mask, 1)
cs_t1 = mask * cs_t1 + (1. - mask) * pre_cell_sig
# functionality: cs_t1 = T.switch(mask , cs_t1, pre_cell_sig)
# Output Gate
og_t1 = gate_act(
T.add(ifco[:, 3 * t_n_out:4 * t_n_out], cur_w_in_sig[:, 3 * t_n_out:4 * t_n_out]))
# Output LSTM
out_sig = T.mul(og_t1, inner_act(cs_t1))
out_sig = mask * out_sig + (1. - mask) * pre_out_sig
return [out_sig, cs_t1]
开发者ID:dzungcamlang,项目名称:recnet,代码行数:30,代码来源:recurrent_layer.py
示例5: beta_H_Sparse
def beta_H_Sparse(X, W, H, beta, l_sp):
"""Update activation with beta divergence
Parameters
----------
X : Theano tensor
data
W : Theano tensor
Bases
H : Theano tensor
activation matrix
beta : Theano scalar
Returns
-------
H : Theano tensor
Updated version of the activations
"""
up = ifelse(T.eq(beta, 2), (T.dot(X, W)) / (T.dot(T.dot(H, W.T), W) +
l_sp),
(T.dot(T.mul(T.power(T.dot(H, W.T),
(beta - 2)), X), W)) /
(T.dot(T.power(T.dot(H, W.T), (beta-1)), W) +
l_sp))
return T.mul(H, up)
开发者ID:mikimaus78,项目名称:groupNMF,代码行数:25,代码来源:updates.py
示例6: W_beta_sub_withcst
def W_beta_sub_withcst(X, W, Wsub, H, Hsub, beta, sum_grp, lambda_grp, card_grp):
"""Update group activation with beta divergence
Parameters
----------
X : Theano tensor
data
W : Theano tensor
Bases
Wsub : Theano tensor
group Bases
H : Theano tensor
activation matrix
Hsub : Theano tensor
group activation matrix
beta : Theano scalar
Returns
-------
H : Theano tensor
Updated version of the activations
"""
up = ifelse(T.eq(beta, 2), (T.dot(X.T, Hsub) + lambda_grp * sum_grp) /
(T.dot(T.dot(H, W.T).T, Hsub) + lambda_grp * card_grp * Wsub),
(T.dot(T.mul(T.power(T.dot(H, W.T), (beta - 2)), X).T, Hsub)+
lambda_grp * sum_grp) /
(T.dot(T.power(T.dot(H, W.T), (beta-1)).T, Hsub) +
lambda_grp * card_grp * Wsub))
return T.mul(Wsub, up)
开发者ID:mikimaus78,项目名称:groupNMF,代码行数:29,代码来源:updates.py
示例7: H_beta_sub
def H_beta_sub(X, W, Wsub, H, Hsub, beta):
"""Update group activation with beta divergence
Parameters
----------
X : Theano tensor
data
W : Theano tensor
Bases
Wsub : Theano tensor
group Bases
H : Theano tensor
activation matrix
Hsub : Theano tensor
group activation matrix
beta : Theano scalar
Returns
-------
H : Theano tensor
Updated version of the activations
"""
up = ifelse(T.eq(beta, 2), (T.dot(X, Wsub)) / (T.dot(T.dot(H, W.T), Wsub)),
(T.dot(T.mul(T.power(T.dot(H, W.T), (beta - 2)), X), Wsub)) /
(T.dot(T.power(T.dot(H, W.T), (beta-1)), Wsub)))
return T.mul(Hsub, up)
开发者ID:mikimaus78,项目名称:groupNMF,代码行数:26,代码来源:updates.py
示例8: get_cost_updates
def get_cost_updates(self, corruption_level, learning_rate):
""" This function computes the cost and the updates for one trainng
step of the dA """
tilde_x = self.get_corrupted_input(self.x, corruption_level)
y = self.get_hidden_values(tilde_x)
z = self.get_reconstructed_input(y)
L = - T.sum(self.x * T.log(z) + (1 - self.x) * T.log(1 - z), axis=1)
# Calculate cross-entropy cost (as alternative to MSE) of the reconstruction of the minibatch.
weight_decay = 0.5 * self.lamda * (T.sum(T.mul(self.W, self.W)) + T.sum(T.mul(self.W_prime, self.W_prime)))
# Calculate weight decay term to prevent overfitting
rho_hat = T.sum(y, axis=1) / tilde_x.shape[1]
KL_divergence = self.beta * T.sum(self.rho * T.log(self.rho / rho_hat) + (1-self.rho) * T.log((1 - self.rho)/(1-rho_hat)))
# KL divergence sparsity term
# Calculate overall errors
cost = T.mean(L) + weight_decay + KL_divergence
# Compute the gradients of the cost of the `dA` with respect
# to its parameters
gparams = T.grad(cost, self.params)
# Generate the list of updates
updates = [
(param, param - learning_rate * gparam)
for param, gparam in zip(self.params, gparams)
]
return (cost, updates)
开发者ID:TakuTsuzuki,项目名称:Hackathon2015,代码行数:32,代码来源:sAE.py
示例9: grad
def grad(self, inputs, g_outputs):
(rho, ) = inputs
(gz,) = g_outputs
A = self.Id - tt.mul(rho, self.Wd)
dinv = tt.nlinalg.matrix_inverse(A).T
out = tt.mul(dinv, - self.Wd)
return [tt.as_tensor(tt.sum(tt.mul(out, gz)), ndim=1)]
开发者ID:jGaboardi,项目名称:pysal,代码行数:7,代码来源:ops.py
示例10: minus_corr
def minus_corr(u, v):
um = T.sub(u, T.mean(u))
vm = T.sub(v, T.mean(v))
r_num = T.sum(T.mul(um, vm))
r_den = T.sqrt(T.mul(T.sum(T.sqr(um)), T.sum(T.sqr(vm))))
r = T.true_div(r_num, r_den)
r = T.neg(r)
return r
开发者ID:dp00143,项目名称:NeuralCorrelation,代码行数:8,代码来源:functions.py
示例11: f1_score
def f1_score(self, y):
n_total = y.shape[0]
n_relevant_documents_predicted = T.sum(T.eq(T.ones(self.y_pred.shape), self.y_pred))
two_vector = T.add(T.ones(self.y_pred.shape), T.ones(self.y_pred.shape))
n_relevant_predicted_correctly = T.sum(T.eq(T.add(self.y_pred, y), two_vector))
precision = T.true_div(n_relevant_predicted_correctly, n_relevant_documents_predicted)
recall = T.true_div(n_relevant_predicted_correctly, n_total)
f1_score = T.mul(2.0, T.true_div(T.mul(precision, recall), T.add(precision, recall)))
return [f1_score, precision, recall]
开发者ID:ericrincon,项目名称:Deep-Learning-NLP,代码行数:9,代码来源:LogisticRegression.py
示例12: lmul_T
def lmul_T(self, x):
CC, RR = self.split_right_shape(tuple(x.shape), T=True)
x_WT = theano.dot(
x.reshape((tensor.mul(*CC), tensor.mul(*RR))),
self._W.T)
cshape = self.col_shape()
yshp = tensor.stack(*(CC + cshape))
rval = x_WT.reshape(yshp, ndim=len(CC) + len(cshape))
return rval
开发者ID:HaniAlmousli,项目名称:pylearn,代码行数:9,代码来源:matrixmul.py
示例13: set_dropout
def set_dropout(self, dropout, activation_function):
action_with_drop = None
if dropout > 0:
action_with_drop = lambda X: T.mul(activation_function(X),self.dropout_function)
self.activation_cv_dropout = lambda X: T.mul(activation_function(X),self.dropout_function_cv)
else:
action_with_drop = activation_function
self.activation_cv_dropout = activation_function
return action_with_drop
开发者ID:ANB2,项目名称:MachineLearning,代码行数:10,代码来源:neural_network_layer.py
示例14: __objective_triple
def __objective_triple(self, triple):
"""
form the objective function value of a triple
:param triple: (entity_l, entity_r, relation)
:return:
"""
l_index, r_index, relation_index = triple
return T.nlinalg.norm(T.mul(self.Relation_L[relation_index, :, :], self.Entity[:, l_index]) -
T.mul(self.Relation_R[relation_index, :, :], self.Entity[:, r_index]),
ord=1)
开发者ID:subhadeepmaji,项目名称:ml_algorithms,代码行数:10,代码来源:RelationEmbedding.py
示例15: lmul
def lmul(self, x):
# dot(x, A)
RR, CC = self.split_left_shape(tuple(x.shape), T=False)
xW = theano.dot(
x.reshape((tensor.mul(*RR), tensor.mul(*CC))),
self._W)
rshape = self.row_shape()
yshp = tensor.stack(*(RR + rshape))
rval = xW.reshape(yshp, ndim=len(RR) + len(rshape))
return rval
开发者ID:HaniAlmousli,项目名称:pylearn,代码行数:10,代码来源:matrixmul.py
示例16: sequence_iteration
def sequence_iteration(self, output, mask, use_dropout=0, dropout_value=0.5):
dot_product = T.dot(output, self.t_w_out)
linear_o = T.add(dot_product, self.t_b_out)
mask = T.addbroadcast(mask, 2) # to do nesseccary?
output = T.mul(mask, linear_o) + T.mul((1. - mask), 1e-6)
return output # result
开发者ID:dzungcamlang,项目名称:recnet,代码行数:11,代码来源:output_layer.py
示例17: square_dist
def square_dist(self, X, Xs):
X = tt.mul(X, 1.0 / self.ls)
X2 = tt.sum(tt.square(X), 1)
if Xs is None:
sqd = (-2.0 * tt.dot(X, tt.transpose(X))
+ (tt.reshape(X2, (-1, 1)) + tt.reshape(X2, (1, -1))))
else:
Xs = tt.mul(Xs, 1.0 / self.ls)
Xs2 = tt.sum(tt.square(Xs), 1)
sqd = (-2.0 * tt.dot(X, tt.transpose(Xs))
+ (tt.reshape(X2, (-1, 1)) + tt.reshape(Xs2, (1, -1))))
return tt.clip(sqd, 0.0, np.inf)
开发者ID:springcoil,项目名称:pymc3,代码行数:12,代码来源:cov.py
示例18: square_dist
def square_dist(self, X, Z):
X = tt.mul(X, 1.0 / self.lengthscales)
Xs = tt.sum(tt.square(X), 1)
if Z is None:
sqd = -2.0 * tt.dot(X, tt.transpose(X)) +\
(tt.reshape(Xs, (-1, 1)) + tt.reshape(Xs, (1, -1)))
else:
Z = tt.mul(Z, 1.0 / self.lengthscales)
Zs = tt.sum(tt.square(Z), 1)
sqd = -2.0 * tt.dot(X, tt.transpose(Z)) +\
(tt.reshape(Xs, (-1, 1)) + tt.reshape(Zs, (1, -1)))
return tt.clip(sqd, 0.0, np.inf)
开发者ID:aasensio,项目名称:pymc3,代码行数:12,代码来源:cov.py
示例19: beta_div
def beta_div(X, W, H, beta):
"""Compute betat divergence"""
div = ifelse(T.eq(beta, 2),
T.sum(1. / 2 * T.power(X - T.dot(H, W), 2)),
ifelse(T.eq(beta, 0),
T.sum(X / T.dot(H, W) - T.log(X / T.dot(H, W)) - 1),
ifelse(T.eq(beta, 1),
T.sum(T.mul(X, (T.log(X) - T.log(T.dot(H, W)))) + T.dot(H, W) - X),
T.sum(1. / (beta * (beta - 1.)) * (T.power(X, beta) +
(beta - 1.) *
T.power(T.dot(H, W), beta) -
beta *
T.power(T.mul(X, T.dot(H, W)),
(beta - 1)))))))
return div
开发者ID:mikimaus78,项目名称:groupNMF,代码行数:15,代码来源:costs.py
示例20: __init
def __init():
dataset = T.matrix("dataset", dtype=config.globalFloatType())
trans_dataset = T.transpose(dataset)
dot_mul = T.dot(dataset, trans_dataset)
l2 = T.sqrt(T.sum(T.square(dataset), axis=1))
# p =printing.Print("l2")
# l2 = p(l2)
l2_inv2 = T.inv(l2).dimshuffle(['x', 0])
# p =printing.Print("l2_inv2")
# l2_inv2 = p(l2_inv2)
l2_inv1 = T.transpose(l2_inv2)
# p =printing.Print("l2_inv1")
# l2_inv1 = p(l2_inv1)
l2_inv = T.dot(l2_inv1, l2_inv2)
# p =printing.Print("l2_inv")
# l2_inv = p(l2_inv)
affinty = (T.mul(dot_mul, l2_inv) + 1) / 2
globals()['__affinty_fun'] = theano.function(
[dataset],
[affinty],
allow_input_downcast=True
)
开发者ID:persistforever,项目名称:sentenceEmbedding,代码行数:28,代码来源:affinity_matrix.py
注:本文中的theano.tensor.mul函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论