• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensor.mod函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中theano.tensor.mod函数的典型用法代码示例。如果您正苦于以下问题:Python mod函数的具体用法?Python mod怎么用?Python mod使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了mod函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: AdaMaxAvg2

def AdaMaxAvg2(ws, objective, alpha=.01, beta1=.1, beta2=.001, beta3=0.01, n_accum=1):
    if n_accum == 1:
        return AdaMaxAvg(ws, objective, alpha, beta1, beta2, beta3)
    print 'AdaMax_Avg2', 'alpha:',alpha,'beta1:',beta1,'beta2:',beta2,'beta3:',beta3,'n_accum:',n_accum
    
    gs = G.ndict.T_grad(objective.sum(), ws, disconnected_inputs='raise')

    new = OrderedDict()
    
    from theano.ifelse import ifelse
    it = G.sharedf(0.)
    new[it] = it + 1
    reset = T.eq(T.mod(it,n_accum), 0)
    update = T.eq(T.mod(it,n_accum), n_accum-1)
    
    ws_avg = []
    for j in range(len(ws)):
        w_avg = {}
        for i in ws[j]:
            _w = ws[j][i]
            _g = gs[j][i]
            #_g = T.switch(T.isnan(_g),T.zeros_like(_g),_g) #remove NaN's
            mom1 = G.sharedf(_w.get_value() * 0.)
            _max = G.sharedf(_w.get_value() * 0.)
            w_avg[i] = G.sharedf(_w.get_value())
            g_sum = G.sharedf(_w.get_value() * 0.)
        
            new[g_sum] = ifelse(reset, _g, g_sum + _g)
            new[mom1] = ifelse(update, (1-beta1) * mom1 + beta1 * new[g_sum], mom1)
            new[_max] = ifelse(update, T.maximum((1-beta2)*_max, abs(new[g_sum]) + 1e-8), _max)
            new[_w] = ifelse(update, _w + alpha *  new[mom1] / new[_max], _w)
            new[w_avg[i]] = ifelse(update, beta3 * new[_w] + (1.-beta3) * w_avg[i], w_avg[i])
        ws_avg += [w_avg]   
    return new, ws_avg
开发者ID:gburt,项目名称:iaf,代码行数:34,代码来源:optim.py


示例2: custom_svrg1

def custom_svrg1(loss, params, m=100, learning_rate=0.01):
    
    grads = theano.grad(loss, params)

    updates = OrderedDict()
    
    it_num = theano.shared(np.cast['int16'](0.))
    it = it_num + 1

    for param, grad in zip(params, grads):
        value = param.get_value(borrow=True)

        mu = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable)

        grad_w_tilde = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable)
        new_grad_w_tilde = theano.ifelse.ifelse(T.eq(it, m), grad, grad_w_tilde)

        mu_acc = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable)

        updates[param] = param - learning_rate * (grad - grad_w_tilde + mu)
        updates[grad_w_tilde] = new_grad_w_tilde

        updates[mu] = theano.ifelse.ifelse(T.eq(T.mod(it, m), 0), mu_acc, mu)
        updates[mu_acc] = theano.ifelse.ifelse(T.eq(T.mod(it, m), 0), 0*mu_acc, mu_acc + grad)

    updates[it_num] = theano.ifelse.ifelse(T.eq(it, m), np.cast['int16'](1), np.cast['int16'](m))

    return updates
开发者ID:justanothercoder,项目名称:NaturalGradient,代码行数:28,代码来源:custom_updates.py


示例3: in_transit

    def in_transit(self, t, r=0.0, texp=None):
        """Get a list of timestamps that are in transit

        Args:
            t (vector): A vector of timestamps to be evaluated.
            r (Optional): The radii of the planets.
            texp (Optional[float]): The exposure time.

        Returns:
            The indices of the timestamps that are in transit.

        """

        z = tt.zeros_like(self.a)
        r = tt.as_tensor_variable(r) + z
        R = self.r_star + z

        # Wrap the times into time since transit
        hp = 0.5 * self.period
        dt = tt.mod(self._warp_times(t) - self.t0 + hp, self.period) - hp

        if self.ecc is None:
            # Equation 14 from Winn (2010)
            k = r / R
            arg = tt.square(1 + k) - tt.square(self.b)
            factor = R / (self.a * self.sin_incl)
            hdur = hp * tt.arcsin(factor * tt.sqrt(arg)) / np.pi
            t_start = -hdur
            t_end = hdur
            flag = z

        else:
            M_contact = self.contact_points_op(
                self.a, self.ecc, self.cos_omega, self.sin_omega,
                self.cos_incl + z, self.sin_incl + z, R + r)
            flag = M_contact[2]

            t_start = (M_contact[0] - self.M0) / self.n
            t_start = tt.mod(t_start + hp, self.period) - hp
            t_end = (M_contact[1] - self.M0) / self.n
            t_end = tt.mod(t_end + hp, self.period) - hp

            t_start = tt.switch(tt.gt(t_start, 0.0),
                                t_start - self.period, t_start)
            t_end = tt.switch(tt.lt(t_end, 0.0),
                              t_end + self.period, t_end)

        if texp is not None:
            t_start -= 0.5*texp
            t_end += 0.5*texp

        mask = tt.any(tt.and_(dt >= t_start, dt <= t_end), axis=-1)
        result = ifelse(tt.all(tt.eq(flag, 0)),
                        tt.arange(t.size)[mask],
                        tt.arange(t.size))

        return result
开发者ID:dfm,项目名称:exoplanet,代码行数:57,代码来源:keplerian.py


示例4: ShiftConv

def ShiftConv(w_t_g, s_t, N):
    shift = 2.*s_t-1.
    Z = T.mod(shift+N, N)
    simj = 1 - (Z - T.floor(Z))
    imj = T.mod(T.arange(N) + T.iround(T.floor(Z)),N)
    w_t_g_roll_1 = T.roll(w_t_g, -T.iround(T.floor(Z)))
    w_t_g_roll_2 = T.roll(w_t_g, -(T.iround(T.floor(Z))+1))
    w_t_s = w_t_g_roll_1*simj + w_t_g_roll_2*(1-simj)
    return w_t_s
开发者ID:chiggum,项目名称:Neural-Turing-Machines,代码行数:9,代码来源:ntm_v1.py


示例5: get_stencil

    def get_stencil(self, t, r=None, texp=None):
        if r is None or texp is None:
            return tt.shape_padright(t)

        z = tt.zeros_like(self.a)
        r = tt.as_tensor_variable(r)
        R = self.r_star + z
        hp = 0.5 * self.period

        if self.ecc is None:
            # Equation 14 from Winn (2010)
            k = r / self.r_star
            arg1 = tt.square(1 + k) - tt.square(self.b)
            arg2 = tt.square(1 - k) - tt.square(self.b)
            factor = R / (self.a * self.sin_incl)
            hdur1 = hp * tt.arcsin(factor * tt.sqrt(arg1)) / np.pi
            hdur2 = hp * tt.arcsin(factor * tt.sqrt(arg2)) / np.pi
            ts = [-hdur1, -hdur2, hdur2, hdur1]
            flag = z

        else:
            M_contact1 = self.contact_points_op(
                self.a, self.ecc, self.cos_omega, self.sin_omega,
                self.cos_incl + z, self.sin_incl + z, R + r)
            M_contact2 = self.contact_points_op(
                self.a, self.ecc, self.cos_omega, self.sin_omega,
                self.cos_incl + z, self.sin_incl + z, R - r)

            flag = M_contact1[2] + M_contact2[2]

            ts = [
                tt.mod((M_contact1[0]-self.M0)/self.n+hp, self.period)-hp,
                tt.mod((M_contact2[0]-self.M0)/self.n+hp, self.period)-hp,
                tt.mod((M_contact2[1]-self.M0)/self.n+hp, self.period)-hp,
                tt.mod((M_contact1[1]-self.M0)/self.n+hp, self.period)-hp
            ]

        start = self.period * tt.floor((tt.min(t) - self.t0) / self.period)
        end = self.period * (tt.ceil((tt.max(t) - self.t0) / self.period) + 1)
        start += self.t0
        end += self.t0
        tout = []
        for i in range(4):
            if z.ndim < 1:
                tout.append(ts[i] + tt.arange(start, end, self.period))
            else:
                tout.append(theano.scan(
                    fn=lambda t0, s0, e0, p0: t0 + tt.arange(s0, e0, p0),
                    sequences=[ts[i], start, end, self.period],
                )[0].flatten())

        ts = tt.sort(tt.concatenate(tout))
        return ts, flag
开发者ID:dfm,项目名称:exoplanet,代码行数:53,代码来源:keplerian.py


示例6: __init__

  def __init__(self, **kwargs):
    super(ConcatConv, self).__init__(**kwargs)

    inputs = T.concatenate([s.output for s in self.sources], axis=2)  # (time, batch, input-dim = row * features)
    time = inputs.shape[0]
    batch = inputs.shape[1]

    if self.status[0]:
      self.input = T.concatenate([s.Output for s in self.sources], axis=3)  # (batch, stack_size, row, time)
    else:
      inputs2 = inputs.reshape((time, batch, inputs.shape[2], self.filter_shape[1]))  # (time, batch, row, stack)
      self.input = inputs2.dimshuffle(1, 3, 2, 0)  # (batch, stack_size, row, time)
    self.input.name = "conv_layer_input_final"

    if self.pool_params[0][1] > 1:
      xp = T.constant(self.pool_params[0][1], 'int32')
      self.input = T.concatenate([self.input, T.zeros((batch, self.filter_shape[1], self.input.shape[2],
                                                       xp - T.mod(self.input.shape[3], xp)), 'float32')], axis=3)
      self.index = T.concatenate([self.index, T.zeros((xp - T.mod(self.index.shape[0], xp), batch), 'int8')], axis=0)

    if self.modes[0] == "valid":
      if self.filter_shape[3] > 1:
        idx = int(self.filter_shape[3] / 2)
        self.index = self.index[idx:-idx]

    self.Output = self.run_cnn(
      inputs=self.input,
      filter_shape=self.filter_shape,
      params=self.pool_params,
      modes=self.modes,
      others=self.other_params
    )

    if self.attrs['batch_norm']:
      self.Output = self.batch_norm(
        self.Output.dimshuffle(0, 2, 3, 1).reshape(
          (self.Output.shape[0] * self.Output.shape[2] * self.Output.shape[3],
           self.Output.shape[1])
        ),
        self.attrs['n_features']
      ).reshape((self.Output.shape[0],
                 self.Output.shape[2],
                 self.Output.shape[3],
                 self.Output.shape[1])).dimshuffle(0, 3, 1, 2)

    # our CRNN only accept 3D tensor (time, batch, dim)
    # so, we have to convert back the output to 3D tensor
    output2 = self.Output.dimshuffle(3, 0, 1, 2)  # (time, batch, features, out-row)
    self.output = output2.reshape((output2.shape[0], output2.shape[1],
                                   output2.shape[2] * output2.shape[3]))  # (time, batch, out-dim)
开发者ID:atuxhe,项目名称:returnn,代码行数:50,代码来源:NetworkCNNLayer.py


示例7: input_row_from_variables

 def input_row_from_variables(ori_ip,dest_ip,ori_lat,ori_long,dest_lat,dest_long,ori_type,dest_type,dist):
     '''Create an input row for the MLP from the inputs'''
     
     input_row = tensor.zeros([input_size])
     
     offset = 0
     
     ips = [ori_ip,dest_ip]
     for ip in ips:
         for _ in range(4):
             input_row = add_one_shot(input_row, offset, tensor.mod(ip,256))
             ip = tensor.int_div(ip,256)
             offset += 256
     
     for lat_,long_ in [(ori_lat,ori_long),(dest_lat,dest_long)]:
         translated_lat = tensor.iround((coordinate_size-1)*(lat_/180 + 0.5))
         input_row = add_thermo(input_row, offset,translated_lat)
         offset += coordinate_size
         
         translated_long = tensor.iround((coordinate_size-1)*(long_/360 + 0.5))
         input_row = add_thermo(input_row, offset,translated_long)
         offset += coordinate_size
     
     for type_ in [ori_type,dest_type]:
         add_one_shot(input_row, offset, type_ +1)
         offset += type_size
     
     translated_dist = tensor.iround((dest_size-1)*(tensor.minimum(1,dist/max_earth_distance)))
     input_row = add_thermo(input_row, offset,translated_dist)
     
     #could be useful if we want to add something
     offset +=dest_size
     
     return input_row
开发者ID:Mr-Kumar-Abhishek,项目名称:pings,代码行数:34,代码来源:theano_play.py


示例8: init_train_updates

    def init_train_updates(self):
        step = self.variables.step
        previous_delta = self.variables.prev_delta
        previous_gradient = self.variables.prev_gradient

        n_parameters = count_parameters(self)
        parameters = list(iter_parameters(self))
        param_vector = parameters2vector(self)

        gradients = T.grad(self.variables.error_func, wrt=parameters)
        full_gradient = T.concatenate([grad.flatten() for grad in gradients])

        beta = self.update_function(previous_gradient, full_gradient,
                                    previous_delta)
        parameter_delta = ifelse(
            T.eq(T.mod(self.variables.epoch, n_parameters), 1),
            -full_gradient,
            -full_gradient + beta * previous_delta
        )
        updated_parameters = param_vector + step * parameter_delta

        updates = [
            (previous_gradient, full_gradient),
            (previous_delta, parameter_delta),
        ]
        parameter_updates = setup_parameter_updates(parameters,
                                                    updated_parameters)
        updates.extend(parameter_updates)

        return updates
开发者ID:EdwardBetts,项目名称:neupy,代码行数:30,代码来源:conjgrad.py


示例9: time_mask

def time_mask(update_freq, maxlen, batch_size):
    '''
    update_freq- after how many time steps, hiddens
                 should be updated.
    maxlen -  maximum length of the input sequence.
    batch_size -  Batch Size for training!
    '''
    new_mask = tensor.alloc(1, maxlen)
    qw = tensor.extra_ops.cumsum(new_mask)
    qw2 = tensor.switch(tensor.eq(tensor.mod(qw,update_freq), 0), 1, 0)
    temp = qw2
    for i in range(batch_size - 1):
        qw2 = tensor.concatenate([qw2,temp], axis=0)

    qw2 = qw2.reshape([batch_size, maxlen])
    qw2 = qw2.T
    new_mask =  qw2
    if update_freq ==1:
        return new_mask, None, None

    ones_array = numpy.ones([1, maxlen])
    cumsum = numpy.cumsum(ones_array)
    mod_array = [int(i%(update_freq)) for i in cumsum]
    mod_array = numpy.asarray(mod_array)
    alpha_mask = numpy.where(mod_array==0)[0]

    interpolation_mask = []
    for i in reversed(range(update_freq)):
        interpolation_mask.append(((i+1)*1.0)/update_freq)

    return new_mask, alpha_mask, interpolation_mask
开发者ID:anirudh9119,项目名称:mscale,代码行数:31,代码来源:lm.py


示例10: ShiftConv

def ShiftConv(w_t_g, s_t, N, num_shifts):
    # pad = (num_shifts//2, (num_shifts-1)//2)
    # w_t_g_pd_ = T.concatenate([w_t_g[(-pad[0]-1):-1], w_t_g, w_t_g[:(pad[1])]])
    # w_t_g_pd = w_t_g_pd_.dimshuffle('x','x','x', 0)
    # filter = s_t.dimshuffle('x', 'x', 'x', 0)
    # convolution = T.nnet.conv2d(w_t_g_pd, filter,
    # input_shape=(1, 1, 1, N + pad[0] + pad[1]),
    # filter_shape=(1, 1, 1, num_shifts),
    # subsample=(1, 1),
    # border_mode='valid')
    # w_t_s = convolution[0, 0, 0, :]
    shift = 2.*s_t-1.
    Z = T.mod(shift+N, N)
    simj = 1 - (Z - T.floor(Z))
    imj = T.mod(T.arange(N) + T.iround(T.floor(Z)),N)
    w_t_g_roll_1 = T.roll(w_t_g, -T.iround(T.floor(Z)))
    w_t_g_roll_2 = T.roll(w_t_g, -(T.iround(T.floor(Z))+1))
    w_t_s = w_t_g_roll_1*simj + w_t_g_roll_2*(1-simj)
    return w_t_s
开发者ID:chiggum,项目名称:Neural-Turing-Machines,代码行数:19,代码来源:ntm_v2.py


示例11: fprop

 def fprop(self, X):
     idx = X[0]
     X = X[1:]
     z = theano.ifelse.ifelse(T.neq(T.mod(idx, self.N), 0),
                              T.zeros((X[0].shape[0]*self.num_sample,
                                       self.nout),
                                       dtype=X[0].dtype),
                              self.inner_fn(X))
     z.name = self.name
     return z
开发者ID:anirudh9119,项目名称:SpeechSyn,代码行数:10,代码来源:layer.py


示例12: train_givens

    def train_givens(self, batch_index, batch_size):
        '''
        batch_index is a theano_variable.
        '''
        # compute the gpu batch index
        # these will all be theano variables
        solver_batches_per_gpu_batch = T.cast(T.int_div(self.num_GPU_store,batch_size), 'int32')
        real_batch_index = T.cast(T.mod(batch_index, solver_batches_per_gpu_batch), 'int32')

        givens = {self.X_batch_var:self.GPU_X_train[real_batch_index*batch_size:(real_batch_index+1)*batch_size]}
        givens[self.y_batch_var] = self.GPU_y_train[real_batch_index*batch_size:(real_batch_index+1)*batch_size]
        return givens
开发者ID:Sandy4321,项目名称:caffe-theano-conversion,代码行数:12,代码来源:dataset.py


示例13: pooling

    def pooling(self, inp, input_dim):
        inp_shuffle = inp.dimshuffle(1,0,2)
        n_timestep = inp_shuffle.shape[1]

        output, _ = theano.scan(
                fn=lambda timestep: T.max(inp_shuffle[:,timestep:timestep+1,:], axis=1),
                sequences=T.arange(0, T.floor(n_timestep/2))*2
                )

        if T.mod(n_timestep, 2) != 0:
            output = T.concatenate([output, inp[-1:,:,:]], axis=0)
        return output
开发者ID:jazzsaxmafia,项目名称:m_CNN,代码行数:12,代码来源:m_CNN.py


示例14: get_phase

        def get_phase(states):
            v, w = states
            angle = T.switch(w > 0,
                             np.pi * v.clip(0, 1),
                             w * (np.pi / T.abs_(T.min(w))))

            mean = T.arctan2(T.sin(angle).mean(axis=-1),
                             T.cos(angle).mean(axis=-1))

            ### calculate angles around the mean
            angle = T.mod(angle + (np.pi - mean[:,None]), 2*np.pi) - np.pi
            std = T.sqrt((angle**2).mean(-1))
            return std
开发者ID:ctn-archive,项目名称:hunsberger-neco2014,代码行数:13,代码来源:neurons.py


示例15: fprop_step

        def fprop_step(state_below, index, state_before, W, U, b):

            state_now = state_before.copy()
            index = self.num_modules -\
                tensor.nonzero(tensor.mod(index+1, self.M))[0].shape[0]
            this_range = index * self.module_dim
            z = tensor.dot(state_below, W[:, :this_range]) +\
                tensor.dot(state_before, U[:, :this_range]) +\
                b[:this_range]
            z = tensor.tanh(z)
            state_now = tensor.set_subtensor(state_now[:, :this_range], z)

            return state_now
开发者ID:zhangmeishan,项目名称:pylearn2,代码行数:13,代码来源:rnn.py


示例16: calc_time_gate

        def calc_time_gate(time_input_n):
            # Broadcast the time across all units
            t_broadcast = time_input_n.dimshuffle([0,'x'])
            # Get the time within the period
            in_cycle_time = T.mod(t_broadcast + shift_broadcast, period_broadcast)
            # Find the phase
            is_up_phase = T.le(in_cycle_time, on_mid_broadcast)
            is_down_phase = T.gt(in_cycle_time, on_mid_broadcast)*T.le(in_cycle_time, on_end_broadcast)
            # Set the mask
            sleep_wake_mask = T.switch(is_up_phase, in_cycle_time/on_mid_broadcast,
                                T.switch(is_down_phase,
                                    (on_end_broadcast-in_cycle_time)/on_mid_broadcast,
                                        off_slope*(in_cycle_time/period_broadcast)))

            return sleep_wake_mask
开发者ID:HenryWoodOTC,项目名称:time_lstm,代码行数:15,代码来源:plstm.py


示例17: AdaMax2

def AdaMax2(w, objective, alpha=.01, beta1=.1, beta2=.001, n_accum=2):
    print 'AdaMax2', 'alpha:',alpha,'beta1:',beta1,'beta2:',beta2, 'n_accum:', n_accum
    g = T.grad(objective.sum(), w, disconnected_inputs='warn')
    
    new = OrderedDict()
    
    from theano.ifelse import ifelse
    it = G.sharedf(0.)
    new[it] = it + 1
    reset = T.eq(T.mod(new[it],n_accum), 0)
    update = T.eq(T.mod(new[it],n_accum), n_accum-1)

    for i in range(len(w)):
        mom1 = G.sharedf(w[i].get_value() * 0.)
        _max = G.sharedf(w[i].get_value() * 0.)
        g_sum = G.sharedf(w[i].get_value() * 0.)
        
        #gi = T.switch(T.isnan(gi),T.zeros_like(gi),gi) #remove NaN's
        new[g_sum] = ifelse(reset, g[i], g_sum + g[i])
        new[mom1] = ifelse(update, (1-beta1) * mom1 + beta1 * new[g_sum], mom1)
        new[_max] = ifelse(update, T.maximum((1-beta2)*_max, abs(new[g_sum]) + 1e-8), _max)
        new[w[i]] = ifelse(update, w[i] + alpha *  new[mom1] / new[_max], w[i])
                
    return new
开发者ID:gburt,项目名称:iaf,代码行数:24,代码来源:optim.py


示例18: step

 def step(input_step, previous_activation, time_step, W_in, W_self, biases):
     new_activation = previous_activation.copy()
     modzero = T.nonzero(T.eq(T.mod(time_step, self.group_labels), 0))[0]
     W_in_now = T.flatten(W_in[:, modzero, :], outdim=2)
     W_self_now = T.flatten(W_self[:, modzero, :], outdim=2)
     biases_now = T.flatten(biases[modzero, :])
     activation = T.dot(input_step, W_in_now)
     activation += T.dot(previous_activation, W_self_now)
     activation += biases_now
     activation = self.activation_function(activation)
     modzero_activation_changes = (modzero * self.group_size) + (
         T.ones((modzero.shape[0], self.group_size), dtype='int32') * T.arange(self.group_size, dtype='int32')).T
     modzero_flatten = T.flatten(modzero_activation_changes).astype('int32')
     new_activation = T.set_subtensor(new_activation[:, modzero_flatten], activation)
     time_step += 1
     return new_activation, time_step
开发者ID:ZenCCoding,项目名称:clockworkrnn-1,代码行数:16,代码来源:Clockwork.py


示例19: attend

 def attend(self, y_p):
   inp, updates = 0, {}
   for i in range(len(self.base)):
     for g in range(self.n_glm):
       B, C, I, H, W_att_in, b_att_in = self.get(y_p, i, g)
       z_i = self.distance(C, H)
       w_i = self.softmax(z_i, I)
       if self.attrs['momentum'] == 'conv2d':
         F = self.item('F',i)
         context = F.shape[3]
         padding = T.zeros((2,context/2,C.shape[1]),'float32')
         att = T.concatenate([padding, T.stack([self.item('att',i), w_i]), padding],axis=1) # 2TB
         v_i = T.nnet.sigmoid(T.dot(T.nnet.conv2d(border_mode='valid',
                             input=att.dimshuffle(2,'x',0,1), # B12T
                             filters=F).dimshuffle(3,0,2,1),self.item('U',i)).reshape((C.shape[0],C.shape[1])))
         w_i *= v_i
         w_i = w_i / w_i.sum(axis=0, keepdims=True)
       elif self.attrs['momentum'] == 'mono': # gating function
         idx = T.arange(z_i.shape[0],dtype='float32').dimshuffle(0,'x').repeat(w_i.shape[1],axis=1) # TB
         d_i = idx - T.sum(self.item('att', i) * idx,axis=0,keepdims=True)
         f_i = T.nnet.sigmoid(T.dot(T.tanh(T.dot(d_i.dimshuffle(0,1,'x'), self.item('D_in', i))), self.item("D_out", i)) + self.item('Db_out',i))[:,:,0]
         w_i = T.exp(-z_i) * f_i * I
         w_i = w_i / w_i.sum(axis=0, keepdims=True)
       self.glimpses[i].append(T.sum(C * w_i.dimshuffle(0,1,'x').repeat(C.shape[2],axis=2),axis=0))
     if self.attrs['smooth']:
       updates[self.state_vars['datt_%d' % i]] = w_i - self.state_vars['att_%d' % i]
     if self.attrs['store']:
       updates[self.state_vars['att_%d' % i]] = theano.gradient.disconnected_grad(w_i)
     if self.attrs['align']:
       Q,K = self.align(w_i,self.item("Q", i))
       updates[self.state_vars['Q_%d' % i]] = Q
       updates[self.state_vars['K_%d' % i]] = K
     if self.attrs['accumulator'] == 'rnn':
       def rnn(x_t, w_t, c_p):
         c = x_t * w_t + c_p * (numpy.float32(1.) - w_t)
         return T.switch(T.ge(c, 0), c, T.exp(c) - 1)
       zT, _ = theano.scan(rnn, sequences=[B,w_i.dimshuffle(0, 1, 'x').repeat(B.shape[2], axis=2)],
                          outputs_info = [T.zeros_like(B[0])])
       z = zT[-1]
     else:
       if self.attrs['nbest'] == 1:
         z = B[T.argmax(w_i,axis=0),T.arange(w_i.shape[1])]
       else:
         z = T.sum(B * w_i.dimshuffle(0, 1, 'x').repeat(B.shape[2], axis=2), axis=0)
     inp += T.dot(z, W_att_in) + b_att_in
   ifelse(T.eq(T.mod(self.n[0],self.attrs['ndec']),0), inp, T.zeros((self.n.shape[0],self.layer.attrs['n_out'] * 4),'float32'))
   return inp, updates
开发者ID:atuxhe,项目名称:returnn,代码行数:47,代码来源:RecurrentTransform.py


示例20: __init__

  def __init__(self, base, momentum=0.1, oracle=False, msteps=100, esteps=200, **kwargs):
    kwargs['loss'] = 'ce'
    super(UnsupervisedOutputLayer, self).__init__(**kwargs)
    if base:
      self.set_attr('base', base[0].name)
    self.set_attr('momentum', momentum)
    self.set_attr('oracle', oracle)
    self.set_attr('msteps', msteps)
    self.set_attr('esteps', esteps)
    eps = T.constant(1e-30, 'float32')
    pc = theano.gradient.disconnected_grad(base[1].output)  # TBV
    pc = print_to_file('pc', pc)
    pcx = base[0].output  # TBV

    self.cnt = self.add_param(theano.shared(numpy.zeros((1,), 'float32'), 'cnt'),
                              custom_update=T.constant(1, 'float32'))
    domax = T.ge(T.mod(T.cast(self.cnt[0], 'int32'), numpy.int32(msteps + esteps)), esteps)

    hyp = T.mean(pcx, axis=1, keepdims=True)
    hyp = hyp / hyp.sum(axis=2, keepdims=True)

    self.hyp = self.add_param(
      theano.shared(numpy.ones((self.attrs['n_out'],), 'float32') / numpy.float32(self.attrs['n_out']), 'hyp'), 'hyp',
      custom_update=T.mean(hyp[:, 0, :], axis=0),
      custom_update_condition=domax,
      custom_update_normalized=True,
      custom_update_exp_average=1. / (1. - momentum))
    hyp = numpy.float32(1. - momentum) * hyp + numpy.float32(momentum) * self.hyp.dimshuffle('x', 'x', 0).repeat(
      hyp.shape[1], axis=1).repeat(hyp.shape[0], axis=0)

    order = T.argsort(self.hyp)[::-1]
    # order = print_to_file('order', order)

    shyp = hyp[:, :, order]
    spcx = pcx[:, :, order]

    # spcx = print_to_file('pcx', spcx)
    # shyp = print_to_file('shyp', shyp)

    K = numpy.float32(1. / (1. - momentum)) * T.sum(T.sum(pc * T.log(pc / shyp), axis=2), axis=0)
    Q = -T.sum(T.sum(pcx * T.log(pcx), axis=2), axis=0)

    # K = print_to_file('K', K)
    # Q = print_to_file('Q', Q)

    self.L = T.sum(T.switch(domax, Q, K))
    self.y_m = spcx.reshape((spcx.shape[0] * spcx.shape[1], spcx.shape[2]))
开发者ID:atuxhe,项目名称:returnn,代码行数:47,代码来源:NetworkOutputLayer.py



注:本文中的theano.tensor.mod函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensor.mul函数代码示例发布时间:2022-05-27
下一篇:
Python tensor.minimum函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap