• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensor.dvector函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中theano.tensor.dvector函数的典型用法代码示例。如果您正苦于以下问题:Python dvector函数的具体用法?Python dvector怎么用?Python dvector使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了dvector函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_profiling

def test_profiling():

    old1 = theano.config.profile
    old2 = theano.config.profile_memory
    try:
        theano.config.profile = True
        theano.config.profile_memory = True

        x = T.dvector("x")
        y = T.dvector("y")
        z = x + y
        p = theano.ProfileStats(False)
        if theano.config.mode in ["DebugMode", "DEBUG_MODE"]:
            m = "FAST_RUN"
        else:
            m = None
        f = theano.function([x, y], z, profile=p, name="test_profiling",
                            mode=m)
        output = f([1, 2, 3, 4], [1, 1, 1, 1])

        buf = StringIO.StringIO()
        f.profile.summary(buf)
    finally:
        theano.config.profile = old1
        theano.config.profile_memory = old2
开发者ID:Jerryzcn,项目名称:Theano,代码行数:25,代码来源:test_profiling.py


示例2: theano_setup

    def theano_setup(self):
    
        W = T.dmatrix('W')
        b = T.dvector('b')
        c = T.dvector('c')
        x = T.dmatrix('x')
    
        s = T.dot(x, W) + c
        # h = 1 / (1 + T.exp(-s))
        # h = T.nnet.sigmoid(s)
        h = T.tanh(s)
        # r = T.dot(h,W.T) + b
        # r = theano.printing.Print("r=")(2*T.tanh(T.dot(h,W.T) + b))
        ract = T.dot(h,W.T) + b
        r = self.output_scaling_factor * T.tanh(ract)
    
        #g  = function([W,b,c,x], h)
        #f  = function([W,b,c,h], r)
        #fg = function([W,b,c,x], r)
    
        # Another variable to be able to call a function
        # with a noisy x and compare it to a reference x.
        y = T.dmatrix('y')

        all_losses = ((r - y)**2)
        loss = T.sum(all_losses)
        #loss = ((r - y)**2).sum()
        
        self.theano_encode_decode = function([W,b,c,x], r)
        self.theano_all_losses = function([W,b,c,x,y], [all_losses, T.abs_(s), T.abs_(ract)])
        self.theano_gradients = function([W,b,c,x,y], [T.grad(loss, W), T.grad(loss, b), T.grad(loss, c)])
开发者ID:gyom,项目名称:cae.py,代码行数:31,代码来源:dae_theano.py


示例3: dtw

def dtw(array1, array2):
    """
    Accepts: two one dimensional arrays
    Returns: (float) DTW distance between them.
    """
    s = np.zeros((array1.size+1, array2.size+1))

    s[:,0] = 1e6
    s[0,:] = 1e6
    s[0,0] = 0.0

    # Set up symbolic variables
    square = T.dmatrix('square')
    vec1 = T.dvector('vec1')
    vec2 = T.dvector('vec2')
    vec1_length = T.dscalar('vec1_length')
    vec2_length = T.dscalar('vec2_length')
    outer_loop = T.arange(vec1_length, dtype='int64')
    inner_loop = T.arange(vec2_length, dtype='int64')

    # Run the outer loop
    path, _ = scan(fn=outer,
                    outputs_info=[dict(initial=square, taps=[-1])],
                    non_sequences=[inner_loop, vec1, vec2],
                    sequences=outer_loop)

    # Compile the function
    theano_square = function([vec1, vec2, square, vec1_length, vec2_length], path, on_unused_input='warn')

    # Call the compiled function and return the actual distance
    return theano_square(array1, array2, s, array1.size, array2.size)[-1][array1.size, array2.size]
开发者ID:astanway,项目名称:theano-dtw,代码行数:31,代码来源:dtw.py


示例4: make_minimizer

def make_minimizer(Model):
    L, y = T.ivector('L'), T.dvector('y')
    mu, eps = T.dscalar('mu'), T.dscalar('eps')
    R, eta = T.dtensor3('R'),  T.dvector('eta')

    model = Model(L, y, mu, R, eta, eps)
    return theano.function([L, y, mu, R, eta, eps], model.minimize())
开发者ID:pminervini,项目名称:knowledge-propagation,代码行数:7,代码来源:momentum.py


示例5: __init__

    def __init__(self,N,Nsub,NRGC,prior=1):
        self.N     = N
        self.Nsub  = Nsub
        self.NRGC  = NRGC
        U   = Th.dmatrix()                   # SYMBOLIC variables       #
        V1  = Th.dvector()                                              #
        V2  = Th.dvector()                                              #
        STA = Th.dvector()                                              #
        STC = Th.dmatrix()                                              #
        theta = Th.dot( U.T , V1 )                                      #
        UV1U  = Th.dot( U , theta )                                     #
        UV1V2U= Th.dot( V1 * U.T , (V2 * U.T).T )                       #
        posterior  = -0.5 * Th.sum( V1 * V2 * U.T*U.T ) \
                     -0.25* Th.sum( UV1V2U.T * UV1V2U ) \
                     -0.5 * Th.sum( UV1U * UV1U * UV1U *V2 *V2 * V1 ) \
                     -0.5 * Th.sum( UV1U * UV1U * V2 * V1 ) \
                     -0.5 * Th.sum( theta * theta ) \
                     + Th.dot( theta.T , STA ) \
                     + Th.sum( Th.dot( V1* V2*U.T , U ) \
                     * (STC + STA.T*STA) )
        dpost_dU  = Th.grad( cost           = posterior ,               #
                             wrt            = U         )               #
        dpost_dV1 = Th.grad( cost           = posterior ,               #
                             wrt            = V1        )               #
        dpost_dV2 = Th.grad( cost           = posterior ,               #
                             wrt            = V2        )               #
#        self.posterior  = function( [U,V2,V1,STA,STC],  UV1V2U)      #
        self.posterior  = function( [U,V2,V1,STA,STC],  posterior)      #
        self.dpost_dU   = function( [U,V2,V1,STA,STC], dpost_dU  )      #
        self.dpost_dV1  = function( [U,V2,V1,STA,STC], dpost_dV1 )      #
        self.dpost_dV2  = function( [U,V2,V1,STA,STC], dpost_dV2 )      #
开发者ID:kolia,项目名称:subunits,代码行数:31,代码来源:LQuadLExP_taylor.py


示例6: __init__

 def __init__(self, first_W):
     self.log_regression = LogisticRegression(first_W)
     st = T.dvector('st')
     ac = T.dvector('ac')
     z = ac*ac
     self.q_ = th.function(inputs=[st, ac],
                           outputs=[self.log_regression.cost(T.concatenate([ac, z, st, ac[:-1] * st[:-1]]))])
开发者ID:Seplanna,项目名称:interactive-recomendation,代码行数:7,代码来源:logistic_regression.py


示例7: LQLEP_wBarrier

def LQLEP_wBarrier( LQLEP    = Th.dscalar(), ldet = Th.dscalar(), v1 = Th.dvector(), 
                    N_spike  = Th.dscalar(), ImM  = Th.dmatrix(),  U = Th.dmatrix(),
                    V2       = Th.dvector(),    u = Th.dvector(),  C = Th.dmatrix(),
                    **other):
    '''
    The actual Linear-Quadratic-Exponential-Poisson log-likelihood, 
    as a function of theta and M, 
    with a barrier on the log-det term and a prior.
    '''
    sq_nonlinearity = V2**2.*Th.sum( Th.dot(U,C)*U, axis=[1])  #Th.sum(U**2,axis=[1])
    nonlinearity = V2 * Th.sqrt( Th.sum( Th.dot(U,C)*U, axis=[1])) #Th.sum(U**2,axis=[1]) )
    if other.has_key('uc'):
        LQLEP_wPrior = LQLEP + 0.5 * N_spike * ( 1./(ldet+250.)**2. \
                     - 0.000001 * Th.sum(Th.log(1.-4*sq_nonlinearity))) \
                     + 10. * Th.sum( (u[2:]+u[:-2]-2*u[1:-1])**2. ) \
                     + 10. * Th.sum( (other['uc'][2:]+other['uc'][:-2]-2*other['uc'][1:-1])**2. ) \
                     + 0.000000001 * Th.sum( v1**2. )
#                     + 100. * Th.sum( v1 )
    #                 + 0.0001*Th.sum( V2**2 )
    else:
        LQLEP_wPrior = LQLEP + 0.5 * N_spike * ( 1./(ldet+250.)**2. \
                     - 0.000001 * Th.sum(Th.log(1.-4*sq_nonlinearity))) \
                     + 10. * Th.sum( (u[2:]+u[:-2]-2*u[1:-1])**2. ) \
                     + 0.000000001 * Th.sum( v1**2. )
#                     + 100. * Th.sum( v1 )
    #                 + 0.0001*Th.sum( V2**2 )
    eigsImM,barrier = eig( ImM )
    barrier   = 1-(Th.sum(Th.log(eigsImM))>-250) * \
                  (Th.min(eigsImM)>0) * (Th.max(4*sq_nonlinearity)<1)
    other.update(locals())
    return named( **other )
开发者ID:kolia,项目名称:subunits,代码行数:31,代码来源:QuadPoiss.py


示例8: test_uniform_vector

    def test_uniform_vector(self):
        random = RandomStreams(utt.fetch_seed())
        low = tensor.dvector()
        high = tensor.dvector()
        out = random.uniform(low=low, high=high)
        assert out.ndim == 1
        f = function([low, high], out)

        low_val = [.1, .2, .3]
        high_val = [1.1, 2.2, 3.3]
        seed_gen = numpy.random.RandomState(utt.fetch_seed())
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))

        # Arguments of size (3,)
        val0 = f(low_val, high_val)
        numpy_val0 = numpy_rng.uniform(low=low_val, high=high_val)
        print('THEANO', val0)
        print('NUMPY', numpy_val0)
        assert numpy.all(val0 == numpy_val0)

        # arguments of size (2,)
        val1 = f(low_val[:-1], high_val[:-1])
        numpy_val1 = numpy_rng.uniform(low=low_val[:-1], high=high_val[:-1])
        print('THEANO', val1)
        print('NUMPY', numpy_val1)
        assert numpy.all(val1 == numpy_val1)

        # Specifying the size explicitly
        g = function([low, high], random.uniform(low=low, high=high, size=(3,)))
        val2 = g(low_val, high_val)
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))
        numpy_val2 = numpy_rng.uniform(low=low_val, high=high_val, size=(3,))
        assert numpy.all(val2 == numpy_val2)
        self.assertRaises(ValueError, g, low_val[:-1], high_val[:-1])
开发者ID:ChinaQuants,项目名称:Theano,代码行数:34,代码来源:test_shared_randomstreams.py


示例9: init_propagate_function

 def init_propagate_function(self):
     x = T.dvector()
     y = T.dmatrix()
     b = T.dvector()
     z = T.dot(x, y) + b
     f = theano.function([x,y,b], z)
     return f
开发者ID:johannbm,项目名称:MTDT-Projects,代码行数:7,代码来源:hidden_layer.py


示例10: neural_net

    def neural_net(
            x=T.dmatrix(),    #our points, one point per row
            y=T.dmatrix(),    #our targets
            w=T.dmatrix(),    #first layer weights
            b=T.dvector(),    #first layer bias
            v=T.dmatrix(),    #second layer weights
            c=T.dvector(),    #second layer bias
            step=T.dscalar(), #step size for gradient descent
            l2_coef=T.dscalar() #l2 regularization amount
            ):
        """Idea A:
        """
        hid = T.tanh(T.dot(x, w) + b)
        pred = T.dot(hid, v) + c
        sse = T.sum((pred - y) * (pred - y))
        w_l2 = T.sum(T.sum(w*w))
        v_l2 = T.sum(T.sum(v*v))
        loss = sse + l2_coef * (w_l2 + v_l2)

        def symbolic_params(cls):
            return [cls.w, cls.b, cls.v, cls.c]

        def update(cls, x, y, **kwargs):
            params = cls.symbolic_params()
            gp = T.grad(cls.loss, params)
            return [], [In(p, update=p - cls.step * g) for p,g in zip(params, gp)]

        def predict(cls, x, **kwargs):
            return cls.pred, []

        return locals()
开发者ID:olivierverdier,项目名称:Theano,代码行数:31,代码来源:symbolic_module.py


示例11: test_0

def test_0():

    N = 16*1000*10*1

    if 1:
        aval = abs(numpy.random.randn(N).astype('float32'))+.1
        bval = numpy.random.randn(N).astype('float32')
        a = T.fvector()
        b = T.fvector()
    else:
        aval = abs(numpy.random.randn(N))+.1
        bval = numpy.random.randn(N)
        a = T.dvector()
        b = T.dvector()

    f = theano.function([a,b], T.pow(a,b), mode='LAZY')
    theano_opencl.elemwise.swap_impls=False
    g = theano.function([a,b], T.pow(a,b), mode='LAZY')

    print 'ocl   time', timeit.Timer(lambda: f(aval, bval)).repeat(3,3)

    print 'gcc   time', timeit.Timer(lambda: g(aval, bval)).repeat(3,3)

    print 'numpy time', timeit.Timer(lambda: aval**bval).repeat(3,3)

    assert ((f(aval, bval) - aval**bval)**2).sum() < 1.1
    assert ((g(aval, bval) - aval**bval)**2).sum() < 1.1
开发者ID:jaberg,项目名称:TheanoWS,代码行数:27,代码来源:test_elemwise.py


示例12: test_loss_updates_one_layer_positive_relu

    def test_loss_updates_one_layer_positive_relu(self):
        n_vis = 4
        n_hid = 2
        hidden_layer = HiddenLayer(n_vis=n_vis, n_hid=n_hid, layer_name='h', activation='relu', param_init_range=0, alpha=0)
        # W = theano.shared(value=np.ones((n_vis, n_hid)), name='h_W', borrow=True)
        # hidden_layer.W = W
        mlp = QNetwork([hidden_layer], discount=1, learning_rate=1)
        
        features = T.dvector('features')
        action = T.lscalar('action')
        reward = T.dscalar('reward')
        next_features = T.dvector('next_features')
        loss, updates = mlp.get_loss_and_updates(features, action, reward, next_features)
        train = theano.function(
                    [features, action, reward, next_features],
                    outputs=loss,
                    updates=updates,
                    mode='FAST_COMPILE')

        features = [1,1,1,1]
        action = 0
        reward = 1
        next_features = [1,1,1,1]

        actual_loss = train(features, action, reward, next_features)
        expected_loss = 0.5

        actual_weights = list(mlp.layers[0].W.eval())
        expected_weights = [[1,0], [1,0], [1,0], [1,0]]

        self.assertEqual(actual_loss, expected_loss)
        self.assertTrue(np.array_equal(actual_weights, expected_weights))
开发者ID:switchfootsid,项目名称:playing_atari,代码行数:32,代码来源:test_nnet.py


示例13: UV

def UV( U  = Th.dmatrix('U') , V1   = Th.dvector('V1') , V2 = Th.dvector('V2') , **result):
    '''
    Reparameterize theta and M as a function of U, V1 and V2.
    '''
    result['theta'] = Th.dot( U.T , V1 )
    result['M'    ] = Th.dot( V1 * U.T , (V2 * U.T).T )
    return result
开发者ID:kolia,项目名称:subunits,代码行数:7,代码来源:QuadPoiss_old.py


示例14: test_normal_vector

    def test_normal_vector(self):
        random = RandomStreams(utt.fetch_seed())
        avg = tensor.dvector()
        std = tensor.dvector()
        out = random.normal(avg=avg, std=std)
        assert out.ndim == 1
        f = function([avg, std], out)

        avg_val = [1, 2, 3]
        std_val = [.1, .2, .3]
        seed_gen = numpy.random.RandomState(utt.fetch_seed())
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))

        # Arguments of size (3,)
        val0 = f(avg_val, std_val)
        numpy_val0 = numpy_rng.normal(loc=avg_val, scale=std_val)
        assert numpy.allclose(val0, numpy_val0)

        # arguments of size (2,)
        val1 = f(avg_val[:-1], std_val[:-1])
        numpy_val1 = numpy_rng.normal(loc=avg_val[:-1], scale=std_val[:-1])
        assert numpy.allclose(val1, numpy_val1)

        # Specifying the size explicitly
        g = function([avg, std], random.normal(avg=avg, std=std, size=(3,)))
        val2 = g(avg_val, std_val)
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))
        numpy_val2 = numpy_rng.normal(loc=avg_val, scale=std_val, size=(3,))
        assert numpy.allclose(val2, numpy_val2)
        self.assertRaises(ValueError, g, avg_val[:-1], std_val[:-1])
开发者ID:ChinaQuants,项目名称:Theano,代码行数:30,代码来源:test_shared_randomstreams.py


示例15: __init__

	def __init__(self, sizes, input_dim, output_dim):
		self.layers = len(sizes) + 1
				
		in_dim = [input_dim] + sizes
		out_dim = sizes + [output_dim]
		x = T.dvector('x')
		y = T.dvector('y')
		self.hyp_params = []
		for i, (r,c) in enumerate(zip(in_dim,out_dim)):
			if i == 0:
				obj = HiddenLayer(x, r, c)
			else:
				obj = HiddenLayer(obj.output,r,c)
			self.hyp_params.append(obj.params)

		

		yhat = obj.output

		prediction = T.argmax(yhat)
		self.predict = theano.function([x],[yhat])
		o_error = T.sum(T.sqr(yhat - y))
		# o_error = T.sum(T.nnet.categorical_crossentropy(yhat, y))
		updates = []
		learning_rate = T.scalar('learning_rate')
		for param in self.hyp_params:
			updates.append((param['W'], param['W'] - learning_rate * T.grad(o_error,param['W'])))
			updates.append((param['b'], param['b'] - learning_rate * T.grad(o_error,param['b'])))

		self.train_step = theano.function([x,y,learning_rate],[o_error],
						updates = updates)
开发者ID:ranarag,项目名称:theano_works,代码行数:31,代码来源:mlp_theano.py


示例16: test_optimize_xent_vector2

    def test_optimize_xent_vector2(self):
        verbose = 0
        mode = theano.compile.mode.get_default_mode()
        if mode == theano.compile.mode.get_mode('FAST_COMPILE'):
            mode = 'FAST_RUN'
        rng = numpy.random.RandomState(utt.fetch_seed())
        x_val = rng.randn(5)
        b_val = rng.randn(5)
        y_val = numpy.asarray([2])

        x = T.dvector('x')
        b = T.dvector('b')
        y = T.lvector('y')

        def print_graph(func):
            for i, node in enumerate(func.maker.fgraph.toposort()):
                print i, node
            # Last node should be the output
            print i, printing.pprint(node.outputs[0])
            print

        ## Test that a biased softmax is optimized correctly
        bias_expressions = [
                T.sum(-T.log(softmax(x + b)[T.arange(y.shape[0]), y])),
                -T.sum(T.log(softmax(b + x)[T.arange(y.shape[0]), y])),
                -T.sum(T.log(softmax(x + b))[T.arange(y.shape[0]), y]),
                T.sum(-T.log(softmax(b + x))[T.arange(y.shape[0]), y])]

        for expr in bias_expressions:
            f = theano.function([x, b, y], expr, mode=mode)
            if verbose:
                print_graph(f)
            try:
                prev, last = f.maker.fgraph.toposort()[-2:]
                assert len(f.maker.fgraph.toposort()) == 3
                # [big_op, sum, dim_shuffle]
                f(x_val, b_val, y_val)
            except Exception:
                theano.printing.debugprint(f)
                raise

            backup = config.warn.sum_div_dimshuffle_bug
            config.warn.sum_div_dimshuffle_bug = False
            try:
                g = theano.function([x, b, y], T.grad(expr, x), mode=mode)
            finally:
                config.warn.sum_div_dimshuffle_bug = backup

            if verbose:
                print_graph(g)
            try:
                ops = [node.op for node in g.maker.fgraph.toposort()]
                assert len(ops) <= 6
                assert crossentropy_softmax_1hot_with_bias_dx in ops
                assert softmax_with_bias in ops
                assert softmax_grad not in ops
                g(x_val, b_val, y_val)
            except Exception:
                theano.printing.debugprint(g)
                raise
开发者ID:srifai,项目名称:Theano,代码行数:60,代码来源:test_nnet.py


示例17: Pretrain

def Pretrain(sda, data, loops, rate):
    L = 0
    R = 0
    input = T.dvector()
    through = theano.function( inputs = [input], outputs = input)
    for lvl in xrange(sda.n_layers-1):
        train = sda.getTrainingFunc(lvl,lvl+1)
        for loop in xrange(loops*len(data[0])):
            p0 = random.randint(0, len(data[0])-1)
            p1 = random.randint(0, len(data[1])-1)
            patch0 = numpy.log(abs(0.7*data[0][p0] + 0.3*data[1][p1])**2+1)/20.0*0.8+0.1
            patch1 = numpy.log(abs(data[0][p0])**2+1)/20.0*0.8+0.1
            patch1 /= numpy.dot(patch1, patch1)
#            plt.subplot(211)
#            plt.imshow(patch0.reshape((5,128)))
#            plt.subplot(212)
#            plt.imshow(patch1.reshape((5,128)))
#            plt.show()
            l,r = train(through(patch1), through(patch1), rate, 0.05)
            L = L + l 
            R = R + r
            if loop%500 == 499:
                print lvl, loop, ':', 10*numpy.log10(0.75**2/(L/500.0/len(data[0][0]))), R/500.0
                L = 0
                R = 0
            
        input = T.dvector()
        through = theano.function( inputs = [input], outputs = sda.goThrough(input, 0, lvl+1) )
开发者ID:amoliu,项目名称:autosub,代码行数:28,代码来源:parse.py


示例18: test_multilayer_sparse

    def test_multilayer_sparse(self):
        # fixed parameters
        bsize = 10     # batch size
        imshp = (5,5)
        kshp = ((3,3),(2,2))
        nkerns = (10,20) # per output pixel
        ssizes = ((1,1),(2,2))
        convmodes = ('full','valid',)

        # symbolic stuff
        kerns = [tensor.dvector(),tensor.dvector()]
        input = tensor.dmatrix()
        rng = numpy.random.RandomState(3423489)

        # build actual input images
        img2d = numpy.arange(bsize*numpy.prod(imshp)).reshape((bsize,)+imshp)
        img1d = img2d.reshape(bsize,-1)

        for mode in ('FAST_COMPILE','FAST_RUN'):
            for conv_mode in convmodes:
                for ss in ssizes:

                    l1hid, l1outshp = sp.applySparseFilter(kerns[0], kshp[0],\
                            nkerns[0], input, imshp, ss, mode=conv_mode)
                    l2hid, l2outshp = sp.applySparseFilter(kerns[1], kshp[1],\
                            nkerns[1], l1hid, l1outshp, ss, mode=conv_mode)

                    l1propup = function([kerns[0], input], l1hid, mode=mode)
                    l2propup = function([kerns[1], l1hid], l2hid, mode=mode)

                    # actual values
                    l1kernvals = numpy.arange(numpy.prod(l1outshp)*numpy.prod(kshp[0]))
                    l2kernvals = numpy.arange(numpy.prod(l2outshp)*numpy.prod(kshp[1])*nkerns[0])
                    l1hidval = l1propup(l1kernvals,img1d)
                    l2hidval = l2propup(l2kernvals,l1hidval)
开发者ID:Dimitris0mg,项目名称:Theano,代码行数:35,代码来源:test_sp.py


示例19: test_loss_updates_one_layer_positive_features_with_negative_weights_relu

    def test_loss_updates_one_layer_positive_features_with_negative_weights_relu(self):
        n_vis = 4
        n_hid = 2
        hidden_layer = HiddenLayer(n_vis=n_vis, n_hid=n_hid, layer_name='h', activation='relu', param_init_range=0, alpha=0)
        hidden_layer.W.set_value(np.ones((n_vis, n_hid)) * -1)
        mlp = QNetwork([hidden_layer], discount=1, learning_rate=1)
        
        features = T.dvector('features')
        action = T.lscalar('action')
        reward = T.dscalar('reward')
        next_features = T.dvector('next_features')
        loss, updates = mlp.get_loss_and_updates(features, action, reward, next_features)
        train = theano.function(
                    [features, action, reward, next_features],
                    outputs=loss,
                    updates=updates,
                    mode='FAST_COMPILE')

        features = [1,1,1,1]
        action = 0
        reward = 1
        next_features = [1,1,1,1]

        actual_loss = train(features, action, reward, next_features)
        expected_loss = 0.5

        actual_weights = mlp.layers[0].W.eval().tolist()
        expected_weights = [[-1,-1], [-1,-1], [-1,-1], [-1,-1]]

        self.assertEqual(actual_loss, expected_loss)
        self.assertSequenceEqual(actual_weights, expected_weights)
开发者ID:switchfootsid,项目名称:playing_atari,代码行数:31,代码来源:test_nnet.py


示例20: theano_setup

    def theano_setup(self):
    
        # The matrices Wb and Wc were originally tied.
        # Because of that, I decided to keep Wb and Wc with
        # the same shape (instead of being transposed) to
        # avoid disturbing the code as much as possible.

        Wb = T.dmatrix('Wb')
        Wc = T.dmatrix('Wc')
        b = T.dvector('b')
        c = T.dvector('c')
        s = T.dscalar('s')
        x = T.dmatrix('x')
    
        h_act = T.dot(x, Wc) + c
        if self.act_func[0] == 'tanh':
            h = T.tanh(h_act)
        elif self.act_func[0] == 'sigmoid':
            h = T.nnet.sigmoid(h_act)
        elif self.act_func[0] == 'id':
            # bad idae
            h = h_act
        else:
            raise("Invalid act_func[0]")

        r_act = T.dot(h, Wb.T) + b
        if self.act_func[1] == 'tanh':
            r = s * T.tanh(r_act)
        elif self.act_func[1] == 'sigmoid':
            r = s * T.nnet.sigmoid(r_act)
        elif self.act_func[1] == 'id':
            r = s * r_act
        else:
            raise("Invalid act_func[1]")


        # Another variable to be able to call a function
        # with a noisy x and compare it to a reference x.
        y = T.dmatrix('y')

        loss = ((r - y)**2)
        sum_loss = T.sum(loss)
        
        # theano_encode_decode : vectorial function in argument X.
        # theano_loss : vectorial function in argument X.
        # theano_gradients : returns triplet of gradients, each of
        #                    which involves the all data X summed
        #                    so it's not a "vectorial" function.

        self.theano_encode_decode = function([Wb,Wc,b,c,s,x], r)
        self.theano_loss = function([Wb,Wc,b,c,s,x,y], loss)

        self.theano_gradients = function([Wb,Wc,b,c,s,x,y],
                                         [T.grad(sum_loss, Wb), T.grad(sum_loss, Wc),
                                          T.grad(sum_loss, b),  T.grad(sum_loss, c),
                                          T.grad(sum_loss, s)])
        # other useful theano functions for the experiments that involve
        # adding noise to the hidden states
        self.theano_encode = function([Wc,c,x], h)
        self.theano_decode = function([Wb,b,s,h], r)
开发者ID:gyom,项目名称:denoising_autoencoder,代码行数:60,代码来源:dae_untied_weights.py



注:本文中的theano.tensor.dvector函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensor.eq函数代码示例发布时间:2022-05-27
下一篇:
Python tensor.dtensor4函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap