• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensor.dtensor4函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中theano.tensor.dtensor4函数的典型用法代码示例。如果您正苦于以下问题:Python dtensor4函数的具体用法?Python dtensor4怎么用?Python dtensor4使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了dtensor4函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_conv_no_bias

    def test_conv_no_bias(self):
        images = T.dtensor4('input_conv')
        weights = T.dtensor4('weights')

        images_internal = U2IConv(imshp=(12, 3, 256, 256), kshp=(12, 3, 3, 3))(images)

        convOut = Conv2D(imshp=(12, 3, 256, 256), kshp=(12, 3, 3, 3), filter_flip=False)(images_internal, weights)
        convOut_user = I2U()(convOut)
        convOutLoss = T.mean(convOut_user)
        conv_op_di = T.grad(convOutLoss, images)
        conv_op_dk = T.grad(convOutLoss, weights)
        convOutBack = [conv_op_di, conv_op_dk]

        ival = numpy.random.rand(12, 3, 256, 256).astype(numpy.float64)
        wval = numpy.random.rand(12, 3, 3, 3).astype(numpy.float64)

        fopt = theano.function(inputs=[images, weights], outputs=convOutBack, mode=mode_with_mkl)
        new_out = fopt(ival, wval)

        convOut = conv2d(images, weights, input_shape=(12, 3, 256, 256), filter_shape=(12, 3, 3, 3), filter_flip=False)
        convOutLoss = T.mean(convOut)
        conv_op_di = T.grad(convOutLoss, images)
        conv_op_dk = T.grad(convOutLoss, weights)
        convOutBack = [conv_op_di, conv_op_dk]

        fori = theano.function(inputs=[images, weights], outputs=convOutBack, mode=mode_without_mkl)
        old_out = fori(ival, wval)

        assert len(fopt.maker.fgraph.toposort()) != len(fori.maker.fgraph.toposort())
        assert numpy.allclose(old_out[0], new_out[0])
        assert new_out[0].dtype == 'float64'
开发者ID:pcs-theano,项目名称:Theano,代码行数:31,代码来源:test_conv.py


示例2: test_infer_shape

    def test_infer_shape(self):
        image = tensor.dtensor4()
        maxout = tensor.dtensor4()
        gz = tensor.dtensor4()
        rng = numpy.random.RandomState(utt.fetch_seed())
        maxpoolshps = ((1, 1), (2, 2), (3, 3), (2, 3), (3, 2))

        image_val = rng.rand(4, 6, 7, 9)
        out_shapes = [[[4, 6, 7, 9], [4, 6, 7, 9]],
                      [[4, 6, 3, 4], [4, 6, 4, 5]],
                      [[4, 6, 2, 3], [4, 6, 3, 3]],
                      [[4, 6, 3, 3], [4, 6, 4, 3]],
                      [[4, 6, 2, 4], [4, 6, 3, 5]]]

        for i, maxpoolshp in enumerate(maxpoolshps):
            for j, ignore_border in enumerate([True, False]):

                # checking shapes generated by DownsampleFactorMax
                self._compile_and_check([image],
                        [DownsampleFactorMax(maxpoolshp,
                        ignore_border=ignore_border)(image)],
                        [image_val], DownsampleFactorMax)

                # checking shapes generated by DownsampleFactorMaxGrad
                maxout_val = rng.rand(*out_shapes[i][j])
                gz_val = rng.rand(*out_shapes[i][j])
                self._compile_and_check([image, maxout, gz],
                        [DownsampleFactorMaxGrad(maxpoolshp,
                        ignore_border=ignore_border)(image, maxout, gz)],
                        [image_val, maxout_val, gz_val],
                                        DownsampleFactorMaxGrad)
开发者ID:errord,项目名称:Theano,代码行数:31,代码来源:test_downsample.py


示例3: test_relu_grad

    def test_relu_grad(self):
        seed = utt.fetch_seed()
        rng = numpy.random.RandomState(seed)

        imgsize_list = ((5, 5), (6, 6), (6, 6), (8, 8))
        n, c = 4, 2

        axis = 1

        image = T.dtensor4('image')
        image1 = T.dtensor4('image1')
        for imgsize in imgsize_list:
            imval = rng.rand(n, c, imgsize[0], imgsize[1])

            out = T.concatenate([image, image1], axis)
            sum_ref = T.sum(out)
            gx_ref = T.grad(sum_ref, [image, image1])
            f_ref = theano.function([image, image1], outputs=gx_ref, mode=mode_without_mkl)
            output_ref = f_ref(imval, imval)

            out_mkl = self.mkl_concatenate_func(axis, image, image1)
            sum_mkl = T.sum(out_mkl)
            gx_mkl = T.grad(sum_mkl, [image, image1])
            f_mkl = theano.function([image, image1], outputs=gx_mkl)
            output_mkl = f_mkl(imval, imval)

            utt.assert_allclose(output_mkl, output_ref)
开发者ID:pcs-theano,项目名称:Theano,代码行数:27,代码来源:test_concatenate.py


示例4: test_infer_shape_gradI

    def test_infer_shape_gradI(self):

        def rand(*shape):
            r = numpy.asarray(numpy.random.rand(*shape), dtype='float64')
            return r * 2 - 1
        corrMM = corr.CorrMM
        gradI = corr.CorrMM_gradInputs

        adtens = T.dtensor4()
        bdtens = T.dtensor4()
        aivec_vals = [[1, 5, 6, 3], [8, 2, 7, 3], [1, 6, 9, 4],
                      [9, 6, 8, 5], [9, 1, 6, 8]]
        bivec_vals = [[7, 5, 3, 1], [4, 2, 5, 3], [12, 6, 3, 2],
                      [5, 6, 1, 3], [7, 1, 3, 4]]
        modes = ['valid', 'full', 'half', (1, 1), (2, 1), (1, 2), 1]
        subsamples = [(1, 1), (2, 1), (1, 2)]

        for aivec_val, bivec_val in zip(aivec_vals, bivec_vals):
            adtens_val = rand(*aivec_val)
            bdtens_val = rand(*bivec_val)
            for mode in modes:
                for subsample in subsamples:
                    # CorrMM
                    cdtens = corrMM(border_mode=mode, subsample=subsample)(adtens, bdtens)
                    f = theano.function([adtens, bdtens], cdtens)
                    cdtens_val = f(adtens_val, bdtens_val)
                    # CorrMM_gradInputs
                    shape = (theano.shared(aivec_val[2]), theano.shared(aivec_val[3]))
                    adtens_g = gradI(border_mode=mode,
                                     subsample=subsample)(bdtens, cdtens, shape=shape)
                    self._compile_and_check([bdtens, cdtens],
                                            [adtens_g],
                                            [bdtens_val, cdtens_val], gradI,
                                            warn=False)
开发者ID:5730279821-TA,项目名称:Theano,代码行数:34,代码来源:test_corr.py


示例5: test_conv_with_bias

    def test_conv_with_bias(self):
        images = T.dtensor4('inputs')
        weights = T.dtensor4('weights')
        bias = T.dvector('bias')

        ishape = [(8, 3, 256, 256), (16, 3, 256, 256), (32, 3, 256, 256), (64, 3, 256, 256)]
        wshape = [(8, 3, 3, 3), (16, 3, 3, 3), (32, 3, 3, 3), (64, 3, 3, 3)]

        for i, ish in enumerate(ishape):
            wsh = wshape[i]
            images_internal = U2IConv(imshp=ish, kshp=wsh)(images)
            convOutBias_internal = Conv2D(imshp=ish, kshp=wsh, filter_flip=False)(images_internal, weights, bias)
            convOutBias_user = I2U()(convOutBias_internal)

            ival = numpy.random.rand(*ish).astype(numpy.float64)
            wval = numpy.random.rand(*wsh).astype(numpy.float64)
            bval = numpy.random.rand(wsh[0]).astype(numpy.float64)

            fopt = theano.function(inputs=[images, weights, bias], outputs=convOutBias_user, mode=mode_with_mkl)
            new_old = fopt(ival, wval, bval)

            convOut = conv2d(images, weights, input_shape=ish, filter_shape=wsh, filter_flip=False)
            convOutBias = convOut + bias.dimshuffle('x', 0, 'x', 'x')
            fori = theano.function(inputs=[images, weights, bias], outputs=convOutBias, mode=mode_without_mkl)
            old_out = fori(ival, wval, bval)

            assert str(fopt.maker.fgraph.toposort()) != str(fori.maker.fgraph.toposort())
            assert numpy.allclose(old_out, new_old)
开发者ID:pcs-theano,项目名称:Theano,代码行数:28,代码来源:test_conv.py


示例6: test_infer_shape_gradW

    def test_infer_shape_gradW(self):
        if theano.config.mode == "FAST_COMPILE":
            raise SkipTest("CorrMM don't work in FAST_COMPILE")

        def rand(*shape):
            r = numpy.asarray(numpy.random.rand(*shape), dtype="float64")
            return r * 2 - 1

        corrMM = corr.CorrMM
        gradW = corr.CorrMM_gradWeights

        adtens = T.dtensor4()
        bdtens = T.dtensor4()
        aivec_vals = [[1, 5, 6, 3], [8, 2, 7, 3], [1, 6, 9, 4], [9, 6, 8, 5], [9, 1, 6, 8]]
        bivec_vals = [[7, 5, 3, 1], [4, 2, 5, 3], [12, 6, 3, 2], [5, 6, 1, 3], [11, 1, 3, 3]]
        modes = ["valid", "full", "half", (1, 1), (2, 1), (1, 2), 1]
        subsamples = [(1, 1), (2, 1), (1, 2)]

        for aivec_val, bivec_val in zip(aivec_vals, bivec_vals):
            adtens_val = rand(*aivec_val)
            bdtens_val = rand(*bivec_val)
            for mode in modes:
                for subsample in subsamples:
                    # CorrMM
                    cdtens = corrMM(border_mode=mode, subsample=subsample)(adtens, bdtens)
                    f = theano.function([adtens, bdtens], cdtens)
                    cdtens_val = f(adtens_val, bdtens_val)
                    # CorrMM_gradWeights
                    shape = (theano.shared(bivec_val[2]), theano.shared(bivec_val[3]))
                    bdtens_g = gradW(border_mode=mode, subsample=subsample)(adtens, cdtens, shape=shape)
                    self._compile_and_check([adtens, cdtens], [bdtens_g], [adtens_val, cdtens_val], gradW, warn=False)
开发者ID:ChinaQuants,项目名称:Theano,代码行数:31,代码来源:test_corr.py


示例7: test_concatenate

    def test_concatenate(self):
        def ref(*inputs):
            axis = inputs[0]
            tensors = inputs[1:]

            return numpy.concatenate(tensors, axis)

        seed = utt.fetch_seed()
        rng = numpy.random.RandomState(seed)

        imgsize_list = ((5, 5), (6, 6), (6, 6), (8, 8))
        n, c = 4, 2

        axis = 1

        image = T.dtensor4('image')
        image1 = T.dtensor4('image1')
        for imgsize in imgsize_list:
            imval = rng.rand(n, c, imgsize[0], imgsize[1])

            output_ref = ref(axis, imval, imval)

            Opout = self.mkl_concatenate_func(axis, image, image1)
            f = function([image, image1], [Opout, ])
            output_mkl = f(imval, imval)

            utt.assert_allclose(output_mkl, output_ref)
开发者ID:pcs-theano,项目名称:Theano,代码行数:27,代码来源:test_concatenate.py


示例8: test_infer_shape_forward

    def test_infer_shape_forward(self):
        if theano.config.mode == "FAST_COMPILE":
            raise SkipTest("CorrMM don't work in FAST_COMPILE")

        def rand(*shape):
            r = numpy.asarray(numpy.random.rand(*shape), dtype='float64')
            return r * 2 - 1
        corrMM = corr.CorrMM

        adtens = T.dtensor4()
        bdtens = T.dtensor4()
        aivec_vals = [[4, 5, 6, 3], [6, 2, 8, 3], [3, 6, 7, 5],
                      [3, 6, 7, 5], [5, 2, 4, 3]]
        bivec_vals = [[7, 5, 3, 2], [4, 2, 5, 3], [5, 6, 3, 2],
                      [5, 6, 2, 3], [6, 2, 4, 3]]
        modes = ['valid', 'full', 'half', (1, 1), (2, 1), (1, 2), 1]
        subsamples = [(1, 1), (2, 1), (1, 2)]

        for aivec_val, bivec_val in zip(aivec_vals, bivec_vals):
            adtens_val = rand(*aivec_val)
            bdtens_val = rand(*bivec_val)
            for mode in modes:
                for subsample in subsamples:
                    # CorrMM
                    cdtens = corrMM(border_mode=mode, subsample=subsample)(adtens, bdtens)
                    self._compile_and_check([adtens, bdtens],
                                            [cdtens],
                                            [adtens_val, bdtens_val], corrMM,
                                            warn=False)
开发者ID:HHiroki,项目名称:Theano,代码行数:29,代码来源:test_corr.py


示例9: setUp

 def setUp(self):
     super (TestConv2D, self).setUp()
     self.input = T.dtensor4('input')
     self.input.name = 'default_V'
     self.filters = T.dtensor4('filters')
     self.filters.name = 'default_filters'
     if not conv.imported_scipy_signal and theano.config.cxx == "":
         raise SkipTest("conv2d tests need SciPy or a c++ compiler")
开发者ID:Donghuan,项目名称:Theano,代码行数:8,代码来源:test_conv.py


示例10: test_infer_shape

    def test_infer_shape(self):
        image = tensor.dtensor4()
        maxout = tensor.dtensor4()
        gz = tensor.dtensor4()
        rng = numpy.random.RandomState(utt.fetch_seed())
        maxpoolshps = ((1, 1), (2, 2), (3, 3), (2, 3), (3, 2))

        image_val = rng.rand(4, 6, 7, 9)
        out_shapes = [[[[4, 6, 7, 9], [4, 6, 7, 9]],
                       [[4, 6, 3, 4], [4, 6, 4, 5]],
                       [[4, 6, 2, 3], [4, 6, 3, 3]],
                       [[4, 6, 3, 3], [4, 6, 4, 3]],
                       [[4, 6, 2, 4], [4, 6, 3, 5]]],
                      [[None, None],
                       [[4, 6, 4, 5], None],
                       [[4, 6, 3, 3], None],
                       [[4, 6, 4, 3], None],
                       [[4, 6, 3, 5], None]],
                      [[None, None],
                       [None, None],
                       [[4, 6, 3, 4], None],
                       [[4, 6, 4, 4], None],
                       [None, None]]]

        for i, maxpoolshp in enumerate(maxpoolshps):
            for j, ignore_border in enumerate([True, False]):
                for k, padding in enumerate([(0, 0), (1, 1), (1, 2)]):
                    if out_shapes[k][i][j] is None:
                        continue
                    # checking shapes generated by DownsampleFactorMax
                    self._compile_and_check([image],
                                            [DownsampleFactorMax(maxpoolshp,
                                                                 ignore_border=ignore_border,
                                                                 padding=padding)(image)],
                                            [image_val], DownsampleFactorMax)

                    # checking shapes generated by MaxPoolGrad
                    maxout_val = rng.rand(*out_shapes[k][i][j])
                    gz_val = rng.rand(*out_shapes[k][i][j])
                    self._compile_and_check([image, maxout, gz],
                                            [MaxPoolGrad(maxpoolshp,
                                                         ignore_border=ignore_border,
                                                         padding=padding)
                                            (image, maxout, gz)],
                                            [image_val, maxout_val, gz_val],
                                            MaxPoolGrad,
                                            warn=False)
        # checking with broadcastable input
        image = tensor.tensor(dtype='float64',
                              broadcastable=(False, False, True, True))
        image_val = rng.rand(4, 6, 1, 1)
        self._compile_and_check(
            [image],
            [DownsampleFactorMax((2, 2),
                                 ignore_border=True,
                                 padding=(0, 0))(image)],
            [image_val], DownsampleFactorMax)
开发者ID:hhoareau,项目名称:Theano,代码行数:57,代码来源:test_downsample.py


示例11: test_no_shape

    def test_no_shape(self):
        images = T.dtensor4('inputs')
        weights = T.dtensor4('weights')

        convOut = conv2d(images, weights, filter_shape=(12, 3, 3, 3), filter_flip=False)

        fopt = theano.function(inputs=[images, weights], outputs=convOut, mode=mode_with_mkl)

        fori = theano.function(inputs=[images, weights], outputs=convOut, mode=mode_without_mkl)

        # No optimization for the case image shape is None
        assert all([not isinstance(n, (Conv2D, U2IConv, I2U)) for n in fopt.maker.fgraph.toposort()])
        assert str(fopt.maker.fgraph.toposort()) == str(fori.maker.fgraph.toposort())
开发者ID:pcs-theano,项目名称:Theano,代码行数:13,代码来源:test_conv.py


示例12: test_pool_stride_padding

    def test_pool_stride_padding(self):
        rng = numpy.random.RandomState(utt.fetch_seed())
        # generate random images
        ds_list = ((3, 3), (4, 4), (3, 4), (5, 5))
        st_list = ((1, 1), (2, 2), (3, 3), (1, 2))
        pad_list = ((1, 1), (0, 0), (1, 1), (1, 1))
        imgsize_list = ((5, 5), (6, 6), (6, 6), (8, 8))
        n = 4
        c = 2

        images = T.dtensor4()

        for idx, ignore_border, mode in product(numpy.arange(len(ds_list)),
                                                [False],
                                                ['max',
                                                 'average_exc_pad']):
            imgsize = imgsize_list[idx]
            imval = rng.rand(n, c, imgsize[0], imgsize[1])
            ds = ds_list[idx]
            st = st_list[idx]
            pad = pad_list[idx]

            # Pure Numpy computation
            numpy_output_val = self.numpy_pool_2d_stride_padding(imval, ds,
                                                                 ignore_border, st,
                                                                 pad, mode)

            # MKL Ops
            output = self.mkl_pool_func(images, ignore_border, mode, ds, st, pad)

            f = function([images, ], [output, ])
            output_val = f(imval)
            utt.assert_allclose(output_val, numpy_output_val)
开发者ID:intel,项目名称:theano,代码行数:33,代码来源:test_pool.py


示例13: __init__

 def __init__(self, minibatch_size=128, epochs=1, learn_rate=1e-3,
         bottleneck_width=10, **kwargs):
     '''Initialize a ready-to-train convolutional autoencoder.'''
     super(IBDPairConvAe, self).__init__(self)
     # Shapes are given as (batch, depth, height, width)
     nchannels = kwargs.get('nchannels', 4)
     weighted = kwargs.get('weighted_cost', False)
     self.minibatch_shape = (minibatch_size, nchannels, 8, 24)
     self.minibatch_size = minibatch_size
     self.image_shape = self.minibatch_shape[1:-1]
     self.num_features = reduce(mul, self.image_shape)
     self.epochs = epochs
     self.learn_rate = learn_rate
     self.bottleneck_width = bottleneck_width
     self.input_var = T.dtensor4('input')
     self.network = self._setup_network()
     self.train_prediction = self._setup_prediction(deterministic=False)
     self.test_prediction = self._setup_prediction(deterministic=True)
     self.train_cost = self._setup_cost(deterministic=False,
             weighted=weighted)
     self.test_cost = self._setup_cost(deterministic=True, array=True)
     self.optimizer = self._setup_optimizer()
     self.train_once = theano.function([self.input_var],
         [self.train_cost], updates=self.optimizer)
     self.predict_fn = theano.function([self.input_var],
         [self.test_cost, self.test_prediction])
开发者ID:NERSC,项目名称:dayabay-learn,代码行数:26,代码来源:LasagneConv.py


示例14: test_gauntlet

    def test_gauntlet(self):
        maxpoolshps = ((1, 1), (3, 3), (5, 3),)
        stridesizes = ((1, 1), (3, 3), (5, 7),)
        # generate random images
        imval = self.rng.rand(4, 10, 16, 16)

        images = T.dtensor4()
        for index_type, index_scope, maxpoolshp, stride, ignore_border in product(['flattened',
                                                        'array'],
                                                        ['local',
                                                         'global'],
                                                       maxpoolshps,
                                                       stridesizes,
                                                       [True, False]):
                # Pool op
                max_pool_op = Pool(ds=maxpoolshp, 
                                   ignore_border=ignore_border, 
                                   st=stride, mode='max')(images)
                max_pool_f = theano.function([images], max_pool_op)
                maxpool_output_val = max_pool_f(imval)
                
                maxpoolswitch_op = MaxPoolSwitch(ds = maxpoolshp,
                                                 ignore_border=ignore_border,
                                                 st=stride, index_type=index_type, 
                                                 index_scope=index_scope)(images)
                f = theano.function([images], maxpoolswitch_op, mode='DebugMode')
                output_val = f(imval)
                self.check_max_and_switches(imval, output_val, maxpool_output_val, 
                                            maxpoolshp, ignore_border, stride, None, 
                                            index_type, index_scope)
开发者ID:bokorn,项目名称:Keras-and-Theano-layers-for-Switched-Pooling,代码行数:30,代码来源:test_switched_pooling.py


示例15: _make_graph

  def _make_graph(self):
    if not self.twod_inputs:
      self._inputs = TT.dtensor4("inputs")
      layer_outputs = self._inputs
    else:
      self._inputs = TT.matrix("inputs")
      layer_outputs = self._inputs.reshape(self.img_shape)
    
    for i in range(0, len(self.conv_weights)):
      # Perform the convolution.
      conv_out = conv.conv2d(layer_outputs, self.conv_weights[i],
          filter_shape = self.filter_shapes[i],
          image_shape = self.layer_shapes[i])
      
      # Downsample the feature maps.
      pooled_out = downsample.max_pool_2d(conv_out, self.pool_sizes[i],
          ignore_border = True)

      # Account for the bias. Since it is a vector, we first need to reshape it
      # to (1, n_filters, 1, 1).
      layer_outputs = self.activation_func(pooled_out + \
          self.conv_biases[i].dimshuffle("x", 0, "x", "x"))

    # Concatenate output maps into one big matrix where each row is the
    # concatenation of all the feature maps from one item in the batch.
    next_shape = self.layer_shapes[i + 1]
    new_shape = (next_shape[0], reduce(mul, next_shape[1:], 1))
    print "New Shape: " + str(new_shape)
    self.x = layer_outputs.reshape(new_shape)
开发者ID:djpetti,项目名称:dec-meg-2014,代码行数:29,代码来源:weight_sharing.py


示例16: test_DownsampleFactorMax

    def test_DownsampleFactorMax(self):
        rng = numpy.random.RandomState(utt.fetch_seed())
        # generate random images
        maxpoolshps = ((1, 1), (2, 2), (3, 3), (2, 3))
        imval = rng.rand(4, 2, 16, 16)
        images = tensor.dtensor4()
        for maxpoolshp, ignore_border, mode in product(
            maxpoolshps, [True, False], ["max", "sum", "average_inc_pad", "average_exc_pad"]
        ):
            # print 'maxpoolshp =', maxpoolshp
            # print 'ignore_border =', ignore_border

            # Pure Numpy computation
            numpy_output_val = self.numpy_max_pool_2d(imval, maxpoolshp, ignore_border, mode=mode)
            output = pool_2d(images, maxpoolshp, ignore_border, mode=mode)
            f = function([images], [output])
            output_val = f(imval)
            utt.assert_allclose(output_val, numpy_output_val)

            # Pool op
            maxpool_op = Pool(maxpoolshp, ignore_border=ignore_border, mode=mode)(images)

            output_shape = Pool.out_shape(imval.shape, maxpoolshp, ignore_border=ignore_border)
            utt.assert_allclose(numpy.asarray(output_shape), numpy_output_val.shape)
            f = function([images], maxpool_op)
            output_val = f(imval)
            utt.assert_allclose(output_val, numpy_output_val)
开发者ID:Tintin-C,项目名称:Theano,代码行数:27,代码来源:test_pool.py


示例17: cnn

def cnn(train_x, train_y, learning_rate=0.05, batch=100, epochs=100):

    train_x = train_x.reshape(-1, 1, 100, 100)

    X = T.dtensor4()
    Y = T.fmatrix()

    w1 = init_weights((8, 1, 3, 3))
    w2 = init_weights((4, 8, 3, 3))
    w = init_weights((196, 62))
    b = init_bias(62)

    l = model(X, w1, w2, w, b)
    y_pred = T.argmax(l, axis=1)

    cost = T.mean(T.nnet.categorical_crossentropy(l, Y))
    params = [w1, w2, w, b]
    update = sgd(cost, params, learning_rate)

    train = theano.function(inputs=[X, Y], outputs=cost, updates=update, allow_input_downcast=True)
    predict = theano.function(inputs=[X], outputs=y_pred, allow_input_downcast=True)

    now = time.strftime("%X", time.localtime())
    print "[%s] Start training" % (now)
    for epoch in range(epochs):
        hit = 0.0
        for start, end in zip(range(0, train_x.shape[0], batch), range(batch, train_x.shape[0], batch)):
            cost = train(train_x[start:end, :], train_y[start:end, :])
            hit = hit + np.sum(np.argmax(train_y[start:end, :], axis=1) == predict(train_x[start:end, :]))
        accuracy = hit / train_x.shape[0]
        now = time.strftime("%X", time.localtime())
        print "[%s] epoch %d, accuracy = %.4f" % (now, epoch + 1, accuracy)
        if accuracy > 0.9950:
            break

    f = open("model.txt", "w")
    lists1 = w1.get_value(borrow=True)
    for i in lists1:
        for j in i:
            for k in j:
                for l in k:
                    f.write((str)(l) + "\t")
    f.write("\n")
    lists2 = w2.get_value(borrow=True)
    for i in lists2:
        for j in i:
            for k in j:
                for l in k:
                    f.write((str)(l) + "\t")
    f.write("\n")
    lists3 = w.get_value(borrow=True)
    for i in lists3:
        for l in i:
            f.write((str)(l) + "\t")
    f.write("\n")
    lists4 = b.get_value(borrow=True)
    for i in lists4:
        f.write((str)(i) + "\t")
    f.write("\n")
    f.close()
开发者ID:xwj95,项目名称:Airwriting,代码行数:60,代码来源:cnn.py


示例18: test_DownsampleFactorMax

    def test_DownsampleFactorMax(self):
        rng = numpy.random.RandomState(utt.fetch_seed())
        # generate random images
        maxpoolshps = ((1, 1), (2, 2), (3, 3), (2, 3))
        imval = rng.rand(4, 10, 64, 64)
        images = tensor.dtensor4()

        for maxpoolshp in maxpoolshps:
            for ignore_border in [True, False]:
                #print 'maxpoolshp =', maxpoolshp
                #print 'ignore_border =', ignore_border

                # Pure Numpy computation
                numpy_output_val = self.numpy_max_pool_2d(imval, maxpoolshp,
                                                          ignore_border)
                output = max_pool_2d(images, maxpoolshp, ignore_border)
                f = function([images, ], [output, ])
                output_val = f(imval)
                assert numpy.all(output_val == numpy_output_val)

                #DownsampleFactorMax op
                maxpool_op = DownsampleFactorMax(maxpoolshp,
                                                 ignore_border=ignore_border)(images)
                f = function([images], maxpool_op)
                output_val = f(imval)
                assert (numpy.abs(output_val - numpy_output_val) < 1e-5).all()
开发者ID:errord,项目名称:Theano,代码行数:26,代码来源:test_downsample.py


示例19: test_DownsampleFactorMaxStride

 def test_DownsampleFactorMaxStride(self):
     rng = numpy.random.RandomState(utt.fetch_seed())
     maxpoolshps = ((1, 1), (3, 3), (5, 3))
     stridesizes = ((1, 1), (3, 3), (5, 7))
     # generate random images
     imval = rng.rand(4, 10, 16, 16)
     outputshps = ((4, 10, 16, 16), (4, 10, 6, 6), (4, 10, 4, 3),
                   (4, 10, 16, 16), (4, 10, 6, 6), (4, 10, 4, 3),
                   (4, 10, 14, 14), (4, 10, 5, 5), (4, 10, 3, 2),
                   (4, 10, 14, 14), (4, 10, 6, 6), (4, 10, 4, 3),
                   (4, 10, 12, 14), (4, 10, 4, 5), (4, 10, 3, 2),
                   (4, 10, 12, 14), (4, 10, 5, 6), (4, 10, 4, 3))
     images = tensor.dtensor4()
     indx = 0
     for maxpoolshp in maxpoolshps:
         for ignore_border in [True, False]:
             for stride in stridesizes:
                 outputshp = outputshps[indx]
                 indx += 1
                 #DownsampleFactorMax op
                 numpy_output_val = \
                     self.numpy_max_pool_2d_stride(imval, maxpoolshp,
                                                   ignore_border, stride)
                 assert numpy_output_val.shape == outputshp, (
                     "outshape is %s, calculated shape is %s"
                     % (outputshp, numpy_output_val.shape))
                 maxpool_op = \
                     DownsampleFactorMax(maxpoolshp,
                                         ignore_border=ignore_border,
                                         st=stride)(images)
                 f = function([images], maxpool_op)
                 output_val = f(imval)
                 utt.assert_allclose(output_val, numpy_output_val)
开发者ID:gyenney,项目名称:Tools,代码行数:33,代码来源:test_downsample.py


示例20: cnn

def cnn(input):
    input.shape = (1, 1, 28, 28)
    x = T.dtensor4('x')
    classifer = CNN(input=x)
    get_p_y = theano.function(inputs=[x], outputs=classifer.outputs)
    pred_y = theano.function(inputs=[x], outputs=classifer.pred)
    return (get_p_y(input), pred_y(input))
开发者ID:royxue,项目名称:DeepLearningModel,代码行数:7,代码来源:lenet5.py



注:本文中的theano.tensor.dtensor4函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensor.dvector函数代码示例发布时间:2022-05-27
下一篇:
Python tensor.dtensor3函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap