• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python compile.pfunc函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中theano.compile.pfunc函数的典型用法代码示例。如果您正苦于以下问题:Python pfunc函数的具体用法?Python pfunc怎么用?Python pfunc使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了pfunc函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_shared_mutable

    def test_shared_mutable(self):
        bval = numpy.arange(5)
        b = shared(bval)
        b_out = b * 2

        # shared vars copy args.
        assert b.get_value(borrow=True) is not bval
        # so we do this to get at the underlying data
        bval = data_of(b)

        # by default, shared are not mutable unless doing an explicit update
        f = pfunc([], [b_out], mode='FAST_RUN')
        assert (f() == numpy.arange(5) * 2).all()
        assert numpy.all(b.get_value(borrow=True) == numpy.arange(5))

        # using updates, b is now a mutable parameter
        f = pfunc([], [b_out], updates=[(b, b_out)], mode='FAST_RUN')
        assert (f() == (numpy.arange(5) * 2)).all()
        # because of the update
        assert (b.get_value(borrow=True) == (numpy.arange(5) * 2)).all()
        assert (bval == (numpy.arange(5) * 2)).all()  # because of mutable=True

        # do not depend on updates being in-place though!
        bval = numpy.arange(5)
        b.set_value(bval, borrow=True)
        bval = data_of(b)
        f = pfunc([], [b_out], updates=[(b, (b_out + 3))], mode='FAST_RUN')
        assert (f() == (numpy.arange(5) * 2)).all()
        # because of the update
        assert (b.get_value(borrow=True) == ((numpy.arange(5) * 2) + 3)).all()
        # bval got modified to something...
        assert not (bval == numpy.arange(5)).all()
        # ... but not to b.value !
        assert not (bval == b.get_value(borrow=True)).all()
开发者ID:gwtaylor,项目名称:Theano,代码行数:34,代码来源:test_pfunc.py


示例2: test_allow_input_downcast_int

    def test_allow_input_downcast_int(self):
        a = tensor.wvector('a')  # int16
        b = tensor.bvector('b')  # int8
        c = tensor.bscalar('c')  # int8

        f = pfunc([a, b, c], (a + b + c), allow_input_downcast=True)
        # Value too big for a, b, or c, silently ignored
        assert f([2 ** 20], [1], 0) == 1
        assert f([3], [312], 0) == 59
        assert f([3], [1], 806) == 42

        g = pfunc([a, b, c], (a + b + c), allow_input_downcast=False)
        # All values are in range. Since they're not ndarrays (but lists
        # or scalars), they will be converted, and their value checked.
        assert numpy.all(g([3], [6], 0) == 9)

        # Values are in range, but a dtype too large has explicitly been given
        # For performance reasons, no check of the data is explicitly performed
        # (It might be OK to change this in the future.)
        self.assertRaises(TypeError, g,
                [3], numpy.array([6], dtype='int16'), 0)

        # Value too big for b, raises TypeError
        self.assertRaises(TypeError, g, [3], [312], 0)

        h = pfunc([a, b, c], (a + b + c))  # Default: allow_input_downcast=None
        # Everything here should behave like with False
        assert numpy.all(h([3], [6], 0) == 9)
        self.assertRaises(TypeError, h,
                [3], numpy.array([6], dtype='int16'), 0)
        self.assertRaises(TypeError, h, [3], [312], 0)
开发者ID:gwtaylor,项目名称:Theano,代码行数:31,代码来源:test_pfunc.py


示例3: test_shared

    def test_shared(self):

        # CHECK: two functions (f1 and f2) can share w
        w = shared(numpy.random.rand(2, 2), 'w')
        wval = w.get_value(borrow=False)

        x = dmatrix()
        out1 = w + x
        out2 = w * x
        f1 = pfunc([x], [out1])
        f2 = pfunc([x], [out2])
        xval = numpy.random.rand(2, 2)
        assert numpy.all(f1(xval) == xval + wval)
        assert numpy.all(f2(xval) == xval * wval)

        # CHECK: updating a shared value
        f3 = pfunc([x], out1, updates=[(w, (w - 1))])
        # f3 changes the value of w
        assert numpy.all(f3(xval) == xval + wval)
        # this same value is read by f1
        assert numpy.all(f1(xval) == xval + (wval - 1))

        w.set_value(w.get_value(borrow=True) * 10, borrow=True)
        # this same value is read by f1
        assert numpy.all(f1(xval) == xval + w.get_value(borrow=True))
开发者ID:gwtaylor,项目名称:Theano,代码行数:25,代码来源:test_pfunc.py


示例4: test_allow_downcast_floatX

    def test_allow_downcast_floatX(self):
        a = tensor.fscalar('a')
        b = tensor.fvector('b')

        f = pfunc([a, b], (a + b), allow_input_downcast=True)
        g = pfunc([a, b], (a + b), allow_input_downcast=False)
        h = pfunc([a, b], (a + b), allow_input_downcast=None)

        # If the values can be accurately represented, OK
        assert numpy.all(f(0, [0]) == 0)
        assert numpy.all(g(0, [0]) == 0)
        assert numpy.all(h(0, [0]) == 0)

        # For the vector: OK iff allow_input_downcast is True
        assert numpy.allclose(f(0, [0.1]), 0.1)
        self.assertRaises(TypeError, g, 0, [0.1])
        self.assertRaises(TypeError, h, 0, [0.1])

        # For the scalar: OK if allow_input_downcast is True,
        # or None and floatX==float32
        assert numpy.allclose(f(0.1, [0]), 0.1)
        self.assertRaises(TypeError, g, 0.1, [0])
        if config.floatX == 'float32':
            assert numpy.allclose(h(0.1, [0]), 0.1)
        else:
            self.assertRaises(TypeError, h, 0.1, [0])
开发者ID:gwtaylor,项目名称:Theano,代码行数:26,代码来源:test_pfunc.py


示例5: test_default_updates_multiple

    def test_default_updates_multiple(self):
        x = shared(0)
        y = shared(1)

        x.default_update = x - 1
        y.default_update = y + 1

        f1 = pfunc([], [x, y])
        f1()
        assert x.get_value() == -1
        assert y.get_value() == 2

        f2 = pfunc([], [x, y], updates=[(x, (x - 2))], no_default_updates=[y])
        f2()
        assert x.get_value() == -3
        assert y.get_value() == 2

        f3 = pfunc([], [x, y], updates=[(x, (x - 2))], no_default_updates=True)
        f3()
        assert x.get_value() == -5
        assert y.get_value() == 2

        f4 = pfunc([], [x, y], updates=[(y, (y - 2))])
        f4()
        assert x.get_value() == -6
        assert y.get_value() == 0
开发者ID:gwtaylor,项目名称:Theano,代码行数:26,代码来源:test_pfunc.py


示例6: test_doc

    def test_doc(self):
        """Ensure the code given in pfunc.txt works as expected"""

        # Example #1.
        a = lscalar()
        b = shared(1)
        f1 = pfunc([a], (a + b))
        f2 = pfunc([Param(a, default=44)], a + b, updates={b: b + 1})
        self.assertTrue(b.get_value() == 1)
        self.assertTrue(f1(3) == 4)
        self.assertTrue(f2(3) == 4)
        self.assertTrue(b.get_value() == 2)
        self.assertTrue(f1(3) == 5)
        b.set_value(0)
        self.assertTrue(f1(3) == 3)

        # Example #2.
        a = tensor.lscalar()
        b = shared(7)
        f1 = pfunc([a], a + b)
        f2 = pfunc([a], a * b)
        self.assertTrue(f1(5) == 12)
        b.set_value(8)
        self.assertTrue(f1(5) == 13)
        self.assertTrue(f2(4) == 32)
开发者ID:gwtaylor,项目名称:Theano,代码行数:25,代码来源:test_pfunc.py


示例7: test_no_shared_as_input

 def test_no_shared_as_input(self):
     """Test that shared variables cannot be used as function inputs."""
     w_init = numpy.random.rand(2, 2)
     w = shared(w_init.copy(), 'w')
     try:
         pfunc([w], theano.tensor.sum(w * w))
         assert False
     except TypeError, e:
         msg = 'Cannot use a shared variable (w) as explicit input'
         if str(e).find(msg) < 0:
             raise
开发者ID:gwtaylor,项目名称:Theano,代码行数:11,代码来源:test_pfunc.py


示例8: functions

def functions(sequence_length):
    """
    Return two functions
     * The first function does prediction.
     * The second function does learning.
    """
    global cached_functions
    cachekey = (sequence_length)
    if len(cached_functions.keys()) > 1:
        # This is problematic because we use global variables for the model parameters.
        # Hence, we might be unsafe, if we are using the wrong model parameters globally.
        assert 0
    if cachekey not in cached_functions:
        logging.info("Need to construct graph for sequence_length=%d..." % (sequence_length))
        learning_rate = t.xscalar()
        inputs = [t.matrix() for i in range(sequence_length)]
        correct_outputs = [t.vector() for i in range(sequence_length)]
        stacked_inputs = stack(inputs)
        output, prehidden = compute(stacked_inputs)

        loss =  

        total_loss = t.sum(loss)

        (dhidden_weights, dhidden_biases, doutput_weights, doutput_biases) = t.grad(total_loss, [hidden_weights, hidden_biases, output_weights, output_biases])
        dcorrect_inputs = t.grad(total_loss, correct_inputs)
        dnoise_inputs = t.grad(total_loss, noise_inputs)
        predict_inputs = correct_inputs
        train_inputs = correct_inputs + noise_inputs + [learning_rate]
        verbose_predict_inputs = predict_inputs
        predict_outputs = [correct_score]
        train_outputs = dcorrect_inputs + dnoise_inputs + [loss, unpenalized_loss, l1penalty, correct_score, noise_score]
        verbose_predict_outputs = [correct_score, correct_prehidden]

        import theano.gof.graph

        nnodes = len(theano.gof.graph.ops(predict_inputs, predict_outputs))
        logging.info("About to compile predict function over %d ops [nodes]..." % nnodes)
        predict_function = pfunc(predict_inputs, predict_outputs, mode=COMPILE_MODE)
        logging.info("...done constructing graph for sequence_length=%d" % (sequence_length))

        nnodes = len(theano.gof.graph.ops(verbose_predict_inputs, verbose_predict_outputs))
        logging.info("About to compile predict function over %d ops [nodes]..." % nnodes)
        verbose_predict_function = pfunc(verbose_predict_inputs, verbose_predict_outputs, mode=COMPILE_MODE)
        logging.info("...done constructing graph for sequence_length=%d" % (sequence_length))

        nnodes = len(theano.gof.graph.ops(train_inputs, train_outputs))
        logging.info("About to compile train function over %d ops [nodes]..." % nnodes)
        train_function = pfunc(train_inputs, train_outputs, mode=COMPILE_MODE, updates=[(p, p-learning_rate*gp) for p, gp in zip((hidden_weights, hidden_biases, output_weights, output_biases), (dhidden_weights, dhidden_biases, doutput_weights, doutput_biases))])
        logging.info("...done constructing graph for sequence_length=%d" % (sequence_length))

        cached_functions[cachekey] = (predict_function, train_function, verbose_predict_function)
    return cached_functions[cachekey]
开发者ID:sinopeus,项目名称:thrax,代码行数:53,代码来源:graph.py


示例9: test_param_strict

    def test_param_strict(self):

        a = tensor.dvector()
        b = shared(7)
        out = a + b

        f = pfunc([Param(a, strict=False)], [out])
        f(numpy.random.rand(8)) # works, rand generates float64 by default
        f(numpy.array([1,2,3,4], dtype='int32')) # works, casting is allowed

        f = pfunc([Param(a, strict=True)], [out])
        try:
            f(numpy.array([1,2,3,4], dtype='int32')) # fails, f expects float64
        except TypeError:
            pass
开发者ID:HaniAlmousli,项目名称:Theano,代码行数:15,代码来源:test_pfunc.py


示例10: test_default_updates

    def test_default_updates(self):
        x = shared(0)
        x.default_update = x + 1

        f = pfunc([], [x])
        f()
        assert x.get_value() == 1

        del x.default_update
        f()
        assert x.get_value() == 2

        g = pfunc([], [x])
        g()
        assert x.get_value() == 2
开发者ID:317070,项目名称:Theano,代码行数:15,代码来源:test_pfunc.py


示例11: test_no_aliasing_2

    def test_no_aliasing_2(self):
        # B and A take one another's values
        # no copying is necessary since each one is updated.
        orig_a = numpy.zeros((2,2))+.5
        orig_b = numpy.zeros((2,2))-.5
        A = self.shared(orig_a)
        B = self.shared(orig_b)
        C = tensor.dmatrix()

        z = numpy.zeros((2,2))

        data_of_a = data_of(A)
        data_of_b = data_of(B)

        f = pfunc([C], [], updates=[(A,B),(B,A)])
        f(z)
        # correctness
        assert numpy.all(data_of(A) == -.5)
        assert numpy.all(data_of(B) == +.5)

        # shared vars may not be aliased
        assert not numpy.may_share_memory(data_of(A), data_of(B))

        # theano should have been smart enough to not make copies
        assert numpy.may_share_memory(data_of(A), data_of_b)
        assert numpy.may_share_memory(data_of(B), data_of_a)
开发者ID:HaniAlmousli,项目名称:Theano,代码行数:26,代码来源:test_pfunc.py


示例12: test_givens

    def test_givens(self):
        x = shared(0)
        assign = pfunc([], x, givens = {x: 3})
        assert assign() == 3
        assert x.get_value(borrow=True) == 0

        y = tensor.ivector()
        f = pfunc([y], y*x, givens = {x : 6})
        assert numpy.all(f([1,1,1]) == [6,6,6])
        assert x.get_value() == 0

        z = tensor.ivector()
        c = z*y
        f = pfunc([y], c+7, givens = {z : theano._asarray([4,4,4], dtype='int32')})
        assert numpy.all(f([1,1,1]) == [11,11,11])
        assert x.get_value() == 0
开发者ID:HaniAlmousli,项目名称:Theano,代码行数:16,代码来源:test_pfunc.py


示例13: test_param_allow_downcast_int

    def test_param_allow_downcast_int(self):
        a = tensor.wvector('a')  # int16
        b = tensor.bvector('b')  # int8
        c = tensor.bscalar('c')  # int8
        f = pfunc([Param(a, allow_downcast=True),
                   Param(b, allow_downcast=False),
                   Param(c, allow_downcast=None)],
                  (a + b + c))

        # Both values are in range. Since they're not ndarrays (but lists),
        # they will be converted, and their value checked.
        assert numpy.all(f([3], [6], 1) == 10)

        # Values are in range, but a dtype too large has explicitly been given
        # For performance reasons, no check of the data is explicitly performed
        # (It might be OK to change this in the future.)
        self.assertRaises(TypeError, f,
                [3], numpy.array([6], dtype='int16'), 1)

        # Value too big for a, silently ignored
        assert numpy.all(f([2 ** 20], numpy.ones(1, dtype='int8'), 1) == 2)

        # Value too big for b, raises TypeError
        self.assertRaises(TypeError, f, [3], [312], 1)

        # Value too big for c, raises TypeError
        self.assertRaises(TypeError, f, [3], [6], 806)
开发者ID:gwtaylor,项目名称:Theano,代码行数:27,代码来源:test_pfunc.py


示例14: test_param_mutable

    def test_param_mutable(self):
        a = tensor.dvector()
        a_out = a * 2  # assuming the op which makes this "in place" triggers

        # using mutable=True will let fip change the value in aval
        fip = pfunc([Param(a, mutable=True)], [a_out], mode='FAST_RUN')
        aval = numpy.random.rand(10)
        aval2 = aval.copy()
        assert numpy.all(fip(aval) == (aval2 * 2))
        assert not numpy.all(aval == aval2)

        # using mutable=False should leave the input untouched
        f = pfunc([Param(a, mutable=False)], [a_out], mode='FAST_RUN')
        aval = numpy.random.rand(10)
        aval2 = aval.copy()
        assert numpy.all(f(aval) == (aval2 * 2))
        assert numpy.all(aval == aval2)
开发者ID:gwtaylor,项目名称:Theano,代码行数:17,代码来源:test_pfunc.py


示例15: test_default_scalar_container

 def test_default_scalar_container(self):
     # Similar in spirit to test_default_container, but updating a scalar
     # variable. This is a sanity check for non mutable types.
     x = shared(0.0, 'x')
     f = pfunc([], x)
     assert f() == 0
     x.set_value(x.get_value(borrow=True) + 1, borrow=True)
     assert f() == 1
开发者ID:gwtaylor,项目名称:Theano,代码行数:8,代码来源:test_pfunc.py


示例16: test_no_aliasing_0

 def test_no_aliasing_0(self):
     # B is a shared variable, A is updated with B's contents
     # we need A to be copied to avoid aliasing
     A = self.shared(numpy.zeros((2, 2)) + .5)
     B = self.shared(numpy.zeros((2, 2)) - .5)
     f = pfunc([], [], updates=[(A, B)])
     f()
     assert not numpy.may_share_memory(data_of(A), data_of(B))
开发者ID:gwtaylor,项目名称:Theano,代码行数:8,代码来源:test_pfunc.py


示例17: test_givens_replaces_shared_variable2

    def test_givens_replaces_shared_variable2(self):
        a = shared(1., 'a')
        a.default_update = a + 3
        c = a + 10
        f = pfunc([], c, givens={a: (a + 10)})

        assert f() == 21
        assert f() == 34
开发者ID:gwtaylor,项目名称:Theano,代码行数:8,代码来源:test_pfunc.py


示例18: test_default_updates_partial_graph

 def test_default_updates_partial_graph(self):
     a = shared(0)
     a.default_update = a + 1  # Increment a each time it is used
     b = 2 * a
     # Use only the tip of the graph, a is not used
     f = pfunc([b], b)
     assert a.get_value() == 0
     f(21)
     assert a.get_value() == 0
开发者ID:317070,项目名称:Theano,代码行数:9,代码来源:test_pfunc.py


示例19: test_givens_replaces_shared_variable

    def test_givens_replaces_shared_variable(self):
        a = shared(1., 'a')
        a.default_update = a + 3.
        b = tensor.dscalar('b')
        c = a + 10
        f = pfunc([b], c, givens={a: b})

        assert len(f.maker.env.inputs) == 1
        assert len(f.maker.env.outputs) == 1
开发者ID:gwtaylor,项目名称:Theano,代码行数:9,代码来源:test_pfunc.py


示例20: test_default_updates_expressions

    def test_default_updates_expressions(self):
        x = shared(0)
        y = shared(1)
        a = lscalar('a')

        z = a * x
        x.default_update = x + y

        f1 = pfunc([a], z)
        f1(12)
        assert x.get_value() == 1

        f2 = pfunc([a], z, no_default_updates=True)
        assert f2(7) == 7
        assert x.get_value() == 1

        f3 = pfunc([a], z, no_default_updates=[x])
        assert f3(9) == 9
        assert x.get_value() == 1
开发者ID:317070,项目名称:Theano,代码行数:19,代码来源:test_pfunc.py



注:本文中的theano.compile.pfunc函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python compile.shared函数代码示例发布时间:2022-05-27
下一篇:
Python compile.function函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap