本文整理汇总了Python中theano.compile.function函数的典型用法代码示例。如果您正苦于以下问题:Python function函数的具体用法?Python function怎么用?Python function使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了function函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_normal_vector
def test_normal_vector(self):
rng_R = random_state_type()
avg = tensor.vector()
std = tensor.vector()
post_r, out = normal(rng_R, avg=avg, std=std)
assert out.ndim == 1
f = compile.function([rng_R, avg, std], [post_r, out], accept_inplace=True)
def as_floatX(thing):
return numpy.asarray(thing, dtype=theano.config.floatX)
avg_val = [1, 2, 3]
std_val = as_floatX([0.1, 0.2, 0.3])
rng = numpy.random.RandomState(utt.fetch_seed())
numpy_rng = numpy.random.RandomState(utt.fetch_seed())
# Arguments of size (3,)
rng0, val0 = f(rng, avg_val, std_val)
numpy_val0 = as_floatX(numpy_rng.normal(loc=as_floatX(avg_val), scale=as_floatX(std_val)))
assert numpy.all(val0 == numpy_val0)
# arguments of size (2,)
rng1, val1 = f(rng0, avg_val[:-1], std_val[:-1])
numpy_val1 = numpy.asarray(numpy_rng.normal(loc=avg_val[:-1], scale=std_val[:-1]), dtype=theano.config.floatX)
assert numpy.all(val1 == numpy_val1)
# Specifying the size explicitly
g = compile.function([rng_R, avg, std], normal(rng_R, avg=avg, std=std, size=(3,)), accept_inplace=True)
rng2, val2 = g(rng1, avg_val, std_val)
numpy_val2 = numpy.asarray(numpy_rng.normal(loc=avg_val, scale=std_val, size=(3,)), dtype=theano.config.floatX)
assert numpy.all(val2 == numpy_val2)
self.assertRaises(ValueError, g, rng2, avg_val[:-1], std_val[:-1])
开发者ID:gokul-uf,项目名称:Theano,代码行数:32,代码来源:test_raw_random.py
示例2: test_multinomial_vector
def test_multinomial_vector(self):
rng_R = random_state_type()
n = tensor.lvector()
pvals = tensor.matrix()
post_r, out = multinomial(rng_R, n=n, pvals=pvals)
assert out.ndim == 2
f = compile.function([rng_R, n, pvals], [post_r, out], accept_inplace=True)
n_val = [1, 2, 3]
pvals_val = [[0.1, 0.9], [0.2, 0.8], [0.3, 0.7]]
pvals_val = numpy.asarray(pvals_val, dtype=config.floatX)
rng = numpy.random.RandomState(utt.fetch_seed())
numpy_rng = numpy.random.RandomState(utt.fetch_seed())
# Arguments of size (3,)
rng0, val0 = f(rng, n_val, pvals_val)
numpy_val0 = numpy.asarray([numpy_rng.multinomial(n=nv, pvals=pv) for nv, pv in zip(n_val, pvals_val)])
assert numpy.all(val0 == numpy_val0)
# arguments of size (2,)
rng1, val1 = f(rng0, n_val[:-1], pvals_val[:-1])
numpy_val1 = numpy.asarray(
[numpy_rng.multinomial(n=nv, pvals=pv) for nv, pv in zip(n_val[:-1], pvals_val[:-1])]
)
assert numpy.all(val1 == numpy_val1)
# Specifying the size explicitly
g = compile.function([rng_R, n, pvals], multinomial(rng_R, n=n, pvals=pvals, size=(3,)), accept_inplace=True)
rng2, val2 = g(rng1, n_val, pvals_val)
numpy_val2 = numpy.asarray([numpy_rng.multinomial(n=nv, pvals=pv) for nv, pv in zip(n_val, pvals_val)])
assert numpy.all(val2 == numpy_val2)
self.assertRaises(ValueError, g, rng2, n_val[:-1], pvals_val[:-1])
开发者ID:gokul-uf,项目名称:Theano,代码行数:32,代码来源:test_raw_random.py
示例3: test_random_function_noshape_args
def test_random_function_noshape_args(self):
"""Test if random_function helper works with args but without shape"""
rng_R = random_state_type()
# No shape, default args -> OK
post_out, out = uniform(rng_R, size=None, ndim=2)
f = compile.function(
[compile.In(rng_R, value=numpy.random.RandomState(utt.fetch_seed()), update=post_out, mutable=True)],
[out],
accept_inplace=True,
)
o, = f()
# No shape, args that have to be broadcasted -> OK
low = tensor.TensorType(dtype="float64", broadcastable=(False, True, True))()
high = tensor.TensorType(dtype="float64", broadcastable=(True, True, True, False))()
post_out2, out2 = uniform(rng_R, size=None, ndim=2, low=low, high=high)
self.assertEqual(out2.ndim, 4)
self.assertEqual(out2.broadcastable, (True, False, True, False))
g = compile.function(
[
low,
high,
compile.In(rng_R, value=numpy.random.RandomState(utt.fetch_seed()), update=post_out2, mutable=True),
],
[out2],
accept_inplace=True,
)
low_v = [[[3]], [[4]], [[-5]]]
high_v = [[[[5, 8]]]]
o2, = g(low_v, high_v)
self.assertEqual(o2.shape, (1, 3, 1, 2))
开发者ID:gokul-uf,项目名称:Theano,代码行数:33,代码来源:test_raw_random.py
示例4: test_uniform_vector
def test_uniform_vector(self):
rng_R = random_state_type()
low = tensor.vector()
high = tensor.vector()
post_r, out = uniform(rng_R, low=low, high=high)
assert out.ndim == 1
f = compile.function([rng_R, low, high], [post_r, out], accept_inplace=True)
def as_floatX(thing):
return numpy.asarray(thing, dtype=theano.config.floatX)
low_val = as_floatX([0.1, 0.2, 0.3])
high_val = as_floatX([1.1, 2.2, 3.3])
rng = numpy.random.RandomState(utt.fetch_seed())
numpy_rng = numpy.random.RandomState(utt.fetch_seed())
# Arguments of size (3,)
rng0, val0 = f(rng, low_val, high_val)
numpy_val0 = as_floatX(numpy_rng.uniform(low=low_val, high=high_val))
assert numpy.all(val0 == numpy_val0)
# arguments of size (2,)
rng1, val1 = f(rng0, low_val[:-1], high_val[:-1])
numpy_val1 = as_floatX(numpy_rng.uniform(low=low_val[:-1], high=high_val[:-1]))
assert numpy.all(val1 == numpy_val1)
# Specifying the size explicitly
g = compile.function([rng_R, low, high], uniform(rng_R, low=low, high=high, size=(3,)), accept_inplace=True)
rng2, val2 = g(rng1, low_val, high_val)
numpy_val2 = as_floatX(numpy_rng.uniform(low=low_val, high=high_val, size=(3,)))
assert numpy.all(val2 == numpy_val2)
self.assertRaises(ValueError, g, rng2, low_val[:-1], high_val[:-1])
开发者ID:gokul-uf,项目名称:Theano,代码行数:32,代码来源:test_raw_random.py
示例5: test_no_inplace
def test_no_inplace(self):
"""Test that when not running inplace, the RandomState is
not updated"""
rf = RandomFunction("uniform", tensor.dvector)
rng_R = random_state_type()
post_r, out = rf(rng_R, (3,), 0.0, 1.0)
f = compile.function([rng_R], [post_r, out])
rng = numpy.random.RandomState(utt.fetch_seed())
rng0, val0 = f(rng)
rng_ = numpy.random.RandomState(utt.fetch_seed())
# rng should still be in a fresh state
self.assertTrue(rng_R.type.values_eq(rng, rng_))
# rng0 should be in an updated state
self.assertFalse(rng_R.type.values_eq(rng, rng0))
f2 = compile.function([compile.In(rng_R, value=rng, update=post_r, mutable=False)], [post_r, out])
rng2, val2 = f2()
# rng should be in a fresh state
self.assertTrue(rng_R.type.values_eq(rng, rng_))
# rng2 should be in an updated state
self.assertFalse(rng_R.type.values_eq(rng, rng2))
# The updated state should be the same for both functions
self.assertTrue(rng_R.type.values_eq(rng2, rng0))
rng3, val3 = f2()
# rng2 should not have changed
self.assertTrue(rng_R.type.values_eq(rng2, rng0))
# rng3 should be an updated again version of rng2
self.assertFalse(rng_R.type.values_eq(rng3, rng2))
self.assertFalse(rng_R.type.values_eq(rng3, rng))
开发者ID:gokul-uf,项目名称:Theano,代码行数:32,代码来源:test_raw_random.py
示例6: test_binomial_vector
def test_binomial_vector(self):
rng_R = random_state_type()
n = tensor.lvector()
prob = tensor.vector()
post_r, out = binomial(rng_R, n=n, p=prob)
assert out.ndim == 1
f = compile.function([rng_R, n, prob], [post_r, out],
accept_inplace=True)
n_val = [1, 2, 3]
prob_val = numpy.asarray([.1, .2, .3], dtype=config.floatX)
rng = numpy.random.RandomState(utt.fetch_seed())
numpy_rng = numpy.random.RandomState(utt.fetch_seed())
# Arguments of size (3,)
rng0, val0 = f(rng, n_val, prob_val)
numpy_val0 = numpy_rng.binomial(n=n_val, p=prob_val)
assert numpy.all(val0 == numpy_val0)
# arguments of size (2,)
rng1, val1 = f(rng0, n_val[:-1], prob_val[:-1])
numpy_val1 = numpy_rng.binomial(n=n_val[:-1], p=prob_val[:-1])
assert numpy.all(val1 == numpy_val1)
# Specifying the size explicitly
g = compile.function([rng_R, n, prob],
binomial(rng_R, n=n, p=prob, size=(3,)),
accept_inplace=True)
rng2, val2 = g(rng1, n_val, prob_val)
numpy_val2 = numpy_rng.binomial(n=n_val, p=prob_val, size=(3,))
assert numpy.all(val2 == numpy_val2)
self.assertRaises(ValueError, g, rng2, n_val[:-1], prob_val[:-1])
开发者ID:SamuelZeng,项目名称:Theano,代码行数:32,代码来源:test_raw_random.py
示例7: test_random_integers_vector
def test_random_integers_vector(self):
rng_R = random_state_type()
low = tensor.lvector()
high = tensor.lvector()
post_r, out = random_integers(rng_R, low=low, high=high)
assert out.ndim == 1
f = compile.function([rng_R, low, high], [post_r, out],
accept_inplace=True)
low_val = [100, 200, 300]
high_val = [110, 220, 330]
rng = numpy.random.RandomState(utt.fetch_seed())
numpy_rng = numpy.random.RandomState(utt.fetch_seed())
# Arguments of size (3,)
rng0, val0 = f(rng, low_val, high_val)
numpy_val0 = numpy.asarray([numpy_rng.random_integers(low=lv, high=hv)
for lv, hv in zip(low_val, high_val)])
assert numpy.all(val0 == numpy_val0)
# arguments of size (2,)
rng1, val1 = f(rng0, low_val[:-1], high_val[:-1])
numpy_val1 = numpy.asarray([numpy_rng.random_integers(low=lv, high=hv)
for lv, hv in zip(low_val[:-1], high_val[:-1])])
assert numpy.all(val1 == numpy_val1)
# Specifying the size explicitly
g = compile.function([rng_R, low, high],
random_integers(rng_R, low=low, high=high, size=(3,)),
accept_inplace=True)
rng2, val2 = g(rng1, low_val, high_val)
numpy_val2 = numpy.asarray([numpy_rng.random_integers(low=lv, high=hv)
for lv, hv in zip(low_val, high_val)])
assert numpy.all(val2 == numpy_val2)
self.assertRaises(ValueError, g, rng2, low_val[:-1], high_val[:-1])
开发者ID:SamuelZeng,项目名称:Theano,代码行数:35,代码来源:test_raw_random.py
示例8: test_multiple_functions
def test_multiple_functions(self):
a = T.scalar() # the a is for 'anonymous' (un-named).
x, s = T.scalars('xs')
v = T.vector('v')
# put in some inputs
list_of_things = [s, x, v]
# some derived thing, whose inputs aren't all in the list
list_of_things.append(a * x + s )
f1 = function([x, In(a, value=1.0, name='a'), In(s, value=0.0, update=s+a*x, mutable=True)], s+a*x)
list_of_things.append(f1)
# now put in a function sharing container with the previous one
f2 = function([x, In(a, value=1.0, name='a'), In(s, value=f1.container[s], update=s+a*x, mutable=True)], s+a*x)
list_of_things.append(f2)
assert isinstance(f2.container[s].storage, list)
assert f2.container[s].storage is f1.container[s].storage
# now put in a function with non-scalar
v_value = numpy.asarray([2, 3, 4.], dtype=config.floatX)
f3 = function([x, In(v, value=v_value)], x+v)
list_of_things.append(f3)
# try to pickle the entire things
try:
saved_format = cPickle.dumps(list_of_things, protocol=-1)
new_list_of_things = cPickle.loads(saved_format)
except NotImplementedError, e:
if e[0].startswith('DebugMode is not picklable'):
return
else:
raise
开发者ID:LEEKYOUNGHUN,项目名称:Theano,代码行数:35,代码来源:test_function_module.py
示例9: function
def function(inputs, output):
if mode is None:
f = compile.function(inputs, output, accept_inplace=True,
allow_input_downcast=True)
else:
f = compile.function(inputs, output, accept_inplace=True,
allow_input_downcast=True, mode=mode)
return f
开发者ID:glorotxa,项目名称:Theano,代码行数:8,代码来源:tensor_grad.py
示例10: test_empty_givens_updates
def test_empty_givens_updates():
# Regression test for bug fixed in 8625e03.
# Empty givens / updates dictionaries were not properly detected before,
# triggering useless crashes at compile time.
x = T.scalar()
y = x * 2
function([theano.In(x)], y, givens={})
function([theano.In(x)], y, updates={})
开发者ID:athiwatp,项目名称:Theano,代码行数:8,代码来源:test_function_module.py
示例11: function
def function(inputs, output):
if mode is None:
f = compile.function(inputs, output, accept_inplace=True,
allow_input_downcast=True, on_unused_input='ignore')
else:
f = compile.function(inputs, output, accept_inplace=True,
allow_input_downcast=True, mode=mode,
on_unused_input='ignore')
return f
开发者ID:fivejjs,项目名称:Theano,代码行数:9,代码来源:gradient.py
示例12: test_permutation_helper
def test_permutation_helper(self):
"""Test that raw_random.permutation_helper generates the same
results as numpy,
and that the 'ndim_added' keyword behaves correctly."""
# permutation_helper needs "ndim_added=1", because its output
# is one dimension more than its "shape" argument (and there's
# no way to determine that automatically).
# Check the working case, over two calls to see if the random
# state is correctly updated.
rf = RandomFunction(permutation_helper, tensor.imatrix, 8,
ndim_added=1)
rng_R = random_state_type()
post_r, out = rf(rng_R, (7,), 8)
f = compile.function(
[compile.In(rng_R,
value=numpy.random.RandomState(utt.fetch_seed()),
update=post_r, mutable=True)],
[out], accept_inplace=True)
numpy_rng = numpy.random.RandomState(utt.fetch_seed())
val0 = f()
val1 = f()
# numpy_rng.permutation outputs one vector at a time,
# so we call it iteratively to generate all the samples.
numpy_val0 = numpy.asarray([numpy_rng.permutation(8)
for i in range(7)])
numpy_val1 = numpy.asarray([numpy_rng.permutation(8)
for i in range(7)])
print val0
print numpy_val0
print val1
print numpy_val1
self.assertTrue(numpy.all(val0 == numpy_val0))
self.assertTrue(numpy.all(val1 == numpy_val1))
# This call lacks "ndim_added=1", so ndim_added defaults to 0.
# A ValueError should be raised.
rf0 = RandomFunction(permutation_helper, tensor.imatrix, 8)
post_r0, out0 = rf0(rng_R, (7,), 8)
f0 = compile.function(
[compile.In(rng_R,
value=numpy.random.RandomState(utt.fetch_seed()),
update=post_r0, mutable=True)],
[out0], accept_inplace=True)
self.assertRaises(ValueError, f0)
# Here, ndim_added is 2 instead of 1. A ValueError should be raised.
rf2 = RandomFunction(permutation_helper, tensor.imatrix, 8,
ndim_added=2)
post_r2, out2 = rf2(rng_R, (7,), 8)
f2 = compile.function(
[compile.In(rng_R,
value=numpy.random.RandomState(utt.fetch_seed()),
update=post_r2, mutable=True)],
[out2], accept_inplace=True)
self.assertRaises(ValueError, f2)
开发者ID:SamuelZeng,项目名称:Theano,代码行数:57,代码来源:test_raw_random.py
示例13: test_shared_state0
def test_shared_state0(self):
a = T.scalar() # the a is for 'anonymous' (un-named).
x, s = T.scalars('xs')
f = function([x, In(a, value=1.0, name='a'), In(s, value=0.0, update=s+a*x, mutable=True)], s+a*x)
g = function([x, In(a, value=1.0, name='a'), In(s, value=f.container[s], update=s-a*x, mutable=True)], s+a*x)
f(1, 2)
self.assertTrue(f[s] == 2)
self.assertTrue(g[s] == 2)
g(1, 2)
self.assertTrue(f[s] == 0)
self.assertTrue(g[s] == 0)
开发者ID:ChienliMa,项目名称:Theano,代码行数:13,代码来源:test_function_module.py
示例14: __init__
def __init__(self):
a = T.scalar() # the a is for 'anonymous' (un-named).
x, s = T.scalars('xs')
v = T.vector('v')
self.s = s
self.x = x
self.v = v
self.e = a * x + s
self.f1 = function([x, In(a, value=1.0, name='a'), In(s, value=0.0, update=s+a*x, mutable=True)], s+a*x)
self.f2 = function([x, In(a, value=1.0, name='a'), In(s, value=self.f1.container[s], update=s+a*x, mutable=True)], s+a*x)
开发者ID:ChienliMa,项目名称:Theano,代码行数:14,代码来源:test_function_module.py
示例15: test_vector_arguments
def test_vector_arguments(self):
rng_R = random_state_type()
low = tensor.vector()
post_r, out = uniform(rng_R, low=low, high=1)
assert out.ndim == 1
f = compile.function([rng_R, low], [post_r, out], accept_inplace=True)
def as_floatX(thing):
return numpy.asarray(thing, dtype=theano.config.floatX)
rng_state0 = numpy.random.RandomState(utt.fetch_seed())
numpy_rng = numpy.random.RandomState(utt.fetch_seed())
post0, val0 = f(rng_state0, [-5, .5, 0, 1])
post1, val1 = f(post0, as_floatX([.9]))
numpy_val0 = as_floatX(numpy_rng.uniform(low=[-5, .5, 0, 1], high=1))
numpy_val1 = as_floatX(numpy_rng.uniform(low=as_floatX([.9]), high=1))
assert numpy.all(val0 == numpy_val0)
assert numpy.all(val1 == numpy_val1)
high = tensor.vector()
post_rb, outb = uniform(rng_R, low=low, high=high)
assert outb.ndim == 1
fb = compile.function([rng_R, low, high], [post_rb, outb],
accept_inplace=True)
post0b, val0b = fb(post1, [-4., -2], [-1, 0])
post1b, val1b = fb(post0b, [-4.], [-1])
numpy_val0b = as_floatX(numpy_rng.uniform(low=[-4., -2], high=[-1, 0]))
numpy_val1b = as_floatX(numpy_rng.uniform(low=[-4.], high=[-1]))
assert numpy.all(val0b == numpy_val0b)
assert numpy.all(val1b == numpy_val1b)
self.assertRaises(ValueError, fb, post1b, [-4., -2], [-1, 0, 1])
#TODO: do we want that?
#self.assertRaises(ValueError, fb, post1b, [-4., -2], [-1])
size = tensor.lvector()
post_rc, outc = uniform(rng_R, low=low, high=high, size=size, ndim=1)
fc = compile.function([rng_R, low, high, size], [post_rc, outc],
accept_inplace=True)
post0c, val0c = fc(post1b, [-4., -2], [-1, 0], [2])
post1c, val1c = fc(post0c, [-4.], [-1], [1])
numpy_val0c = as_floatX(numpy_rng.uniform(low=[-4., -2], high=[-1, 0]))
numpy_val1c = as_floatX(numpy_rng.uniform(low=[-4.], high=[-1]))
assert numpy.all(val0c == numpy_val0c)
assert numpy.all(val1c == numpy_val1c)
self.assertRaises(ValueError, fc, post1c, [-4., -2], [-1, 0], [1])
self.assertRaises(ValueError, fc, post1c, [-4., -2], [-1, 0], [1, 2])
self.assertRaises(ValueError, fc, post1c, [-4., -2], [-1, 0], [2, 1])
self.assertRaises(ValueError, fc, post1c, [-4., -2], [-1], [1])
开发者ID:SamuelZeng,项目名称:Theano,代码行数:50,代码来源:test_raw_random.py
示例16: test_inplace_optimization
def test_inplace_optimization(self):
"""Test that FAST_RUN includes the random_make_inplace optimization"""
#inplace = False
rf2 = RandomFunction(numpy.random.RandomState.uniform, tensor.dvector)
rng_R = random_state_type()
# If calling RandomFunction directly, all args have to be specified,
# because shape will have to be moved to the end
post_r2, out2 = rf2(rng_R, (4,), 0., 1.)
f = compile.function(
[compile.In(rng_R,
value=numpy.random.RandomState(utt.fetch_seed()),
update=post_r2,
mutable=True)],
out2,
mode='FAST_RUN') # DEBUG_MODE can't pass the id-based
# test below
# test that the RandomState object stays the same from function call to
# function call, but that the values returned change from call to call.
id0 = id(f[rng_R])
val0 = f()
assert id0 == id(f[rng_R])
val1 = f()
assert id0 == id(f[rng_R])
assert not numpy.allclose(val0, val1)
开发者ID:SamuelZeng,项目名称:Theano,代码行数:29,代码来源:test_raw_random.py
示例17: test_none
def test_none(self):
fn = function([], None) #ok
rval = fn()
if rval == []:
raise KnownFailureTest('See #254: Using None as function output leads to [] return value')
else:
assert rval is None
开发者ID:aelaguiz,项目名称:Theano,代码行数:7,代码来源:test_function_module.py
示例18: test_mixed_shape
def test_mixed_shape(self):
# Test when the provided shape is a tuple of ints and scalar vars
rng_R = random_state_type()
shape0 = tensor.lscalar()
shape = (shape0, 3)
post_r, u = uniform(rng_R, size=shape, ndim=2)
f = compile.function([rng_R, shape0], u)
rng_state0 = numpy.random.RandomState(utt.fetch_seed())
assert f(rng_state0, 2).shape == (2, 3)
assert f(rng_state0, 8).shape == (8, 3)
post_r, v = uniform(rng_R, size=shape)
g = compile.function([rng_R, shape0], v)
assert g(rng_state0, 2).shape == (2, 3)
assert g(rng_state0, 8).shape == (8, 3)
开发者ID:SamuelZeng,项目名称:Theano,代码行数:16,代码来源:test_raw_random.py
示例19: test_multinomial
def test_multinomial(self):
"""Test that raw_random.multinomial generates the same
results as numpy."""
# Check over two calls to see if the random state is correctly updated.
rng_R = random_state_type()
post_r, out = multinomial(rng_R, (7, 3), 6, [0.2] * 5)
f = compile.function(
[compile.In(rng_R,
value=numpy.random.RandomState(utt.fetch_seed()),
update=post_r, mutable=True)],
[out], accept_inplace=True)
numpy_rng = numpy.random.RandomState(utt.fetch_seed())
val0, = f()
val1, = f()
numpy_val0 = numpy_rng.multinomial(6, [0.2] * 5, (7, 3))
numpy_val1 = numpy_rng.multinomial(6, [0.2] * 5, (7, 3))
print val0
print numpy_val0
print val1
print numpy_val1
self.assertTrue(numpy.all(val0 == numpy_val0))
self.assertTrue(numpy.all(val1 == numpy_val1))
self.assertTrue(val0.shape == (7, 3, 5))
self.assertTrue(val1.shape == (7, 3, 5))
开发者ID:SamuelZeng,项目名称:Theano,代码行数:27,代码来源:test_raw_random.py
示例20: test_permutation
def test_permutation(self):
"""Test that raw_random.permutation generates the same
results as numpy."""
rng_R = random_state_type()
post_r, out = permutation(rng_R, size=(9,), n=6)
print 'OUT NDIM', out.ndim
f = compile.function(
[compile.In(rng_R,
value=numpy.random.RandomState(utt.fetch_seed()),
update=post_r, mutable=True)],
[out], accept_inplace=True)
numpy_rng = numpy.random.RandomState(utt.fetch_seed())
# Check over two calls to see if the random state is correctly updated.
# numpy_rng.permutation outputs one vector at a time,
# so we call it iteratively to generate all the samples.
val0 = f()
val1 = f()
numpy_val0 = numpy.asarray([numpy_rng.permutation(6)
for i in range(9)])
numpy_val1 = numpy.asarray([numpy_rng.permutation(6)
for i in range(9)])
print val0
print numpy_val0
print val1
print numpy_val1
self.assertTrue(numpy.all(val0 == numpy_val0))
self.assertTrue(numpy.all(val1 == numpy_val1))
开发者ID:SamuelZeng,项目名称:Theano,代码行数:28,代码来源:test_raw_random.py
注:本文中的theano.compile.function函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论