本文整理汇总了Python中tensorflow.python.training.training.get_global_step函数的典型用法代码示例。如果您正苦于以下问题:Python get_global_step函数的具体用法?Python get_global_step怎么用?Python get_global_step使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了get_global_step函数的17个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: model_fn
def model_fn(features, labels, mode):
_ = labels
step = training.get_global_step()
w = variable_scope.get_variable(
'w',
shape=[],
initializer=init_ops.zeros_initializer(),
dtype=dtypes.int64)
if estimator_lib.ModeKeys.TRAIN == mode:
# to consume features, we have control dependency
with ops.control_dependencies([features]):
step_inc = state_ops.assign_add(training.get_global_step(), 1)
with ops.control_dependencies([step_inc]):
assign_w_to_step_plus_2 = w.assign(step + 2)
return estimator_lib.EstimatorSpec(
mode,
loss=constant_op.constant(3.),
train_op=assign_w_to_step_plus_2)
if estimator_lib.ModeKeys.EVAL == mode:
# to consume features, we have control dependency
with ops.control_dependencies([features]):
loss = constant_op.constant(5.)
return estimator_lib.EstimatorSpec(
mode,
loss=loss,
# w is constant in each step, so the mean.
# w = 0 if step==0 else step+2
eval_metric_ops={'mean_of_const': metrics_lib.mean(w)})
开发者ID:ChristinaEricka,项目名称:tensorflow,代码行数:28,代码来源:hooks_test.py
示例2: _model_fn
def _model_fn(features, labels, mode):
predictions = layers.dense(
features['x'], 1, kernel_initializer=init_ops.zeros_initializer())
export_outputs = {
'predictions': export_output.RegressionOutput(predictions)
}
if mode == model_fn_lib.ModeKeys.PREDICT:
return model_fn_lib.EstimatorSpec(
mode, predictions=predictions, export_outputs=export_outputs)
loss = losses.mean_squared_error(labels, predictions)
train_op = training.GradientDescentOptimizer(learning_rate=0.5).minimize(
loss, training.get_global_step())
eval_metric_ops = {
'absolute_error': metrics_lib.mean_absolute_error(
labels, predictions)
}
return model_fn_lib.EstimatorSpec(
mode,
predictions=predictions,
loss=loss,
train_op=train_op,
eval_metric_ops=eval_metric_ops,
export_outputs=export_outputs)
开发者ID:LugarkPirog,项目名称:tensorflow,代码行数:26,代码来源:estimator_test.py
示例3: model_fn_global_step_incrementer
def model_fn_global_step_incrementer(features, labels, mode):
_, _ = features, labels
global_step = training.get_global_step()
return model_fn_lib.EstimatorSpec(
mode,
loss=constant_op.constant(1.),
train_op=state_ops.assign_add(global_step, 1))
开发者ID:brainwy12,项目名称:tensorflow,代码行数:7,代码来源:estimator_test.py
示例4: _create_global_step
def _create_global_step(self, graph):
"""Creates a global step suitable for TPUs.
Args:
graph: The graph in which to create the global step.
Returns:
A global step `Tensor`.
Raises:
ValueError: if the global step tensor is already defined.
"""
graph = graph or ops.get_default_graph()
if training.get_global_step(graph) is not None:
raise ValueError('"global_step" already exists.')
# Create in proper graph and base name_scope.
with graph.as_default() as g, g.name_scope(None):
return variable_scope.get_variable(
ops.GraphKeys.GLOBAL_STEP,
shape=[],
dtype=dtypes.int32,
initializer=init_ops.zeros_initializer(),
trainable=False,
use_resource=True,
collections=[ops.GraphKeys.GLOBAL_VARIABLES,
ops.GraphKeys.GLOBAL_STEP])
开发者ID:awisbith,项目名称:tensorflow,代码行数:26,代码来源:tpu_estimator.py
示例5: model_fn_diff_modes
def model_fn_diff_modes(features, labels, mode):
_, _ = features, labels
v = variables.Variable(21, name='some_var')
train_op = None
loss = constant_op.constant(104)
if mode == model_fn_lib.ModeKeys.TRAIN:
loss = constant_op.constant(105)
predictions = constant_op.constant([501])
train_op = control_flow_ops.group(
state_ops.assign_add(training.get_global_step(), 1),
state_ops.assign_add(v, 3))
elif mode == model_fn_lib.ModeKeys.EVAL:
loss = constant_op.constant(106)
predictions = constant_op.constant([502])
else:
loss = constant_op.constant(107)
predictions = constant_op.constant([503])
return model_fn_lib.EstimatorSpec(
mode,
loss=loss,
train_op=train_op,
eval_metric_ops={
'abs_err': metrics_lib.mean_absolute_error(
constant_op.constant(0), predictions)},
predictions=predictions)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:25,代码来源:saved_model_estimator_test.py
示例6: model_fn
def model_fn(features, labels, mode):
_ = labels
with ops.control_dependencies([features['x']]):
loss = features['x'][1][0]
return model_fn_lib.EstimatorSpec(
mode,
loss=loss,
train_op=state_ops.assign_add(training.get_global_step(), 1))
开发者ID:AnishShah,项目名称:tensorflow,代码行数:8,代码来源:saved_model_estimator_test.py
示例7: model_fn
def model_fn(features, mode):
del features
global_step = training.get_global_step()
return estimator_lib.EstimatorSpec(
mode,
loss=constant_op.constant([5.]),
predictions={'x': constant_op.constant([5.])},
train_op=global_step.assign_add(1))
开发者ID:DILASSS,项目名称:tensorflow,代码行数:8,代码来源:extenders_test.py
示例8: _model_fn_with_incremental_loss
def _model_fn_with_incremental_loss(features, labels, mode):
_, _ = features, labels
local_weight = variables.Variable(
0., name='local_weight', collections=[ops.GraphKeys.LOCAL_VARIABLES])
# Loss will be 2, 4, 6, ...
loss = 2 * state_ops.assign_add(local_weight, 1.)
return model_fn_lib.EstimatorSpec(
mode,
loss=loss,
train_op=state_ops.assign_add(training.get_global_step(), 1))
开发者ID:Immexxx,项目名称:tensorflow,代码行数:10,代码来源:estimator_test.py
示例9: _create_and_assert_global_step
def _create_and_assert_global_step(self, graph):
"""Creates and asserts properties of the global step.
Args:
graph: The graph in which to create the global step tensor.
Returns:
The global step `Tensor`.
"""
step = self._create_global_step(graph)
assert step == training.get_global_step()
assert step.dtype.is_integer
return step
开发者ID:ilya-edrenkin,项目名称:tensorflow,代码行数:13,代码来源:estimator.py
示例10: _model_fn_with_eval_metric_ops
def _model_fn_with_eval_metric_ops(features, labels, mode, params):
_, _ = features, labels
metric_name = params.get('metric_name') or 'metric'
metric_value = params.get('metric_value') or 2.
global_step = training.get_global_step()
loss = constant_op.constant(1.)
metric_update_op = loss.op
metric_tensor = control_flow_ops.with_dependencies(
[metric_update_op], constant_op.constant(metric_value))
return model_fn_lib.EstimatorSpec(
mode,
loss=loss,
predictions={'predictions': constant_op.constant(1.)},
train_op=state_ops.assign_add(global_step, 1),
eval_metric_ops={metric_name: (metric_tensor, metric_update_op)})
开发者ID:brainwy12,项目名称:tensorflow,代码行数:15,代码来源:estimator_test.py
示例11: _model_fn
def _model_fn(features, labels, mode, config, params=None):
"""model_fn."""
# TODO(jhseu): Move to EVAL and PREDICT to TPU.
if mode != model_fn_lib.ModeKeys.TRAIN:
return _call_model_fn_without_tpu(
model_fn, features, labels, mode, config, params)
# Now for TPU training.
if params is not None and _BATCH_SIZE_KEY in params:
params[_BATCH_SIZE_KEY] //= config.tpu_config.num_shards
assert isinstance(features, _PerShardOutput)
features = features.as_list()
if labels is not None:
assert isinstance(labels, _PerShardOutput)
labels = labels.as_list()
dequeue_fn, enqueue_fn = (
_create_infeed_enqueue_ops_and_dequeue_fn(config, features, labels))
loss = _train_on_tpu_shards(
config,
train_step=_convert_model_fn_to_train_step(
model_fn, dequeue_fn, mode, config, params))
# Gets the variables back from TPU nodes. This means the variables updated
# by TPU will now be *synced* to host memory.
update_ops = [
array_ops.check_numerics(v.read_value(),
'Gradient for %s is NaN' % v.name).op
for v in variables.trainable_variables()
]
hooks = [
TpuInfeedSessionHook(config, enqueue_fn),
training.LoggingTensorHook(
{'loss': array_ops.identity(loss),
'step': training.get_global_step()},
every_n_secs=30)
]
return model_fn_lib.EstimatorSpec(
mode,
loss=array_ops.identity(loss),
training_hooks=hooks,
train_op=control_flow_ops.group(*update_ops))
开发者ID:Joetz,项目名称:tensorflow,代码行数:47,代码来源:tpu_estimator.py
示例12: _build_train_op
def _build_train_op(self, loss):
"""Creates the training operation,
In case of use_target_network == True, we append also the update op
while taking into account the update_frequency.
"""
train_op = super(BaseQModel, self)._build_train_op(loss)
# check if we need to update the target graph
if self.use_target_graph:
update_op = tf.cond(
tf.equal(tf.mod(training.get_global_step(), self.target_update_frequency), 0),
self._build_update_target_graph,
lambda: tf.no_op(name='no_op_copy_target'))
# append the target update op to the train op.
train_op = tf.group(*[train_op, update_op], name='train_and_update_target')
return train_op
开发者ID:AlexMikhalev,项目名称:polyaxon,代码行数:19,代码来源:base.py
示例13: _model_fn
def _model_fn(features, labels, mode, config, params):
"""A Estimator `model_fn` for TPUEstimator."""
model_fn_wrapper = _ModelFnWrapper(model_fn, config, params, mode,
train_batch_size)
# TODO(jhseu): Move to EVAL and PREDICT to TPU.
if not use_tpu or mode != model_fn_lib.ModeKeys.TRAIN:
return model_fn_wrapper.call_without_tpu(features, labels)
inputs = _InputsHolder(features=features, labels=labels,
num_shards=config.tpu_config.num_shards)
dequeue_fn, enqueue_fn = _create_infeed_enqueue_ops_and_dequeue_fn(
inputs, config)
loss = _train_on_tpu_system(model_fn_wrapper, dequeue_fn)
# Gets the variables back from TPU nodes. This means the variables updated
# by TPU will now be *synced* to host memory.
update_ops = [
array_ops.check_numerics(v.read_value(),
'Gradient for %s is NaN' % v.name).op
for v in variables.trainable_variables()
]
hooks = [
TPUInfeedSessionHook(config, enqueue_fn),
training.LoggingTensorHook(
{'loss': array_ops.identity(loss),
'step': training.get_global_step()},
every_n_secs=30)
]
return model_fn_lib.EstimatorSpec(
mode,
loss=array_ops.identity(loss),
training_hooks=hooks,
train_op=control_flow_ops.group(*update_ops))
开发者ID:Dr4KK,项目名称:tensorflow,代码行数:38,代码来源:tpu_estimator.py
示例14: testSaveAndLoadSavedModelExport
def testSaveAndLoadSavedModelExport(
self, model_builder, uses_learning_phase, optimizer, train_before_export):
saved_model_path = self._save_model_dir()
with self.session(graph=ops.Graph()):
np.random.seed(130)
input_arr = np.random.random((1, 3))
target_arr = np.random.random((1, 3))
model = model_builder(uses_learning_phase)
if optimizer is not None:
model.compile(
loss='mse',
optimizer=optimizer,
metrics=['mae'])
if train_before_export:
model.train_on_batch(input_arr, target_arr)
ref_loss, ref_mae = model.evaluate(input_arr, target_arr)
ref_predict = model.predict(input_arr)
# Export SavedModel
output_path = keras_saved_model.save_keras_model(model, saved_model_path)
input_name = model.input_names[0]
output_name = model.output_names[0]
target_name = output_name + '_target'
# Load predict graph, and test predictions
with session.Session(graph=ops.Graph()) as sess:
inputs, outputs, _ = load_model(sess, output_path,
model_fn_lib.ModeKeys.PREDICT)
predictions = sess.run(outputs[output_name],
{inputs[input_name]: input_arr})
self.assertAllClose(ref_predict, predictions, atol=1e-05)
if optimizer:
# Load eval graph, and test predictions, loss and metric values
with session.Session(graph=ops.Graph()) as sess:
inputs, outputs, _ = load_model(sess, output_path,
model_fn_lib.ModeKeys.EVAL)
# First obtain the loss and predictions, and run the metric update op by
# feeding in the inputs and targets.
loss, predictions, _ = sess.run(
(outputs['loss'], outputs['predictions/' + output_name],
outputs['metrics/mean_absolute_error/update_op']), {
inputs[input_name]: input_arr,
inputs[target_name]: target_arr
})
# The metric value should be run after the update op, to ensure that it
# reflects the correct value.
metric_value = sess.run(outputs['metrics/mean_absolute_error/value'])
self.assertEqual(int(train_before_export),
sess.run(training_module.get_global_step()))
self.assertAllClose(ref_loss, loss, atol=1e-05)
self.assertAllClose(ref_mae, metric_value, atol=1e-05)
self.assertAllClose(ref_predict, predictions, atol=1e-05)
# Load train graph, and check for the train op, and prediction values
with session.Session(graph=ops.Graph()) as sess:
inputs, outputs, meta_graph_def = load_model(
sess, output_path, model_fn_lib.ModeKeys.TRAIN)
self.assertEqual(int(train_before_export),
sess.run(training_module.get_global_step()))
self.assertIn('loss', outputs)
self.assertIn('metrics/mean_absolute_error/update_op', outputs)
self.assertIn('metrics/mean_absolute_error/value', outputs)
self.assertIn('predictions/' + output_name, outputs)
# Train for a step
train_op = loader_impl.get_train_op(meta_graph_def)
train_outputs, _ = sess.run(
[outputs, train_op], {inputs[input_name]: input_arr,
inputs[target_name]: target_arr})
self.assertEqual(int(train_before_export) + 1,
sess.run(training_module.get_global_step()))
if uses_learning_phase:
self.assertAllClose(
[[0, 0, 0]], train_outputs['predictions/' + output_name],
atol=1e-05)
else:
self.assertNotAllClose(
[[0, 0, 0]], train_outputs['predictions/' + output_name],
atol=1e-05)
开发者ID:aeverall,项目名称:tensorflow,代码行数:89,代码来源:keras_saved_model_test.py
示例15: get_grad_multiplier
def get_grad_multiplier(self):
if self._grad_multiplier_fn:
return ops.convert_to_tensor(
self._grad_multiplier_fn(training.get_global_step()),
dtype=dtypes.float32)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:5,代码来源:_tpu_estimator_embedding.py
示例16: testSaveAndLoadSavedModelExport
def testSaveAndLoadSavedModelExport(
self, model_builder, uses_learning_phase, optimizer, train_before_export):
saved_model_path = self._save_model_dir()
with self.session(graph=ops.Graph()):
input_arr = np.random.random((1, 3))
target_arr = np.random.random((1, 3))
model = model_builder(uses_learning_phase)
if optimizer is not None:
model.compile(
loss='mse',
optimizer=optimizer,
metrics=['mae'])
if train_before_export:
model.train_on_batch(input_arr, target_arr)
ref_loss, ref_mae = model.evaluate(input_arr, target_arr)
ref_predict = model.predict(input_arr)
# Export SavedModel
output_path = keras_saved_model.save_keras_model(model, saved_model_path)
input_name = model.input_names[0]
output_name = model.output_names[0]
target_name = output_name + '_target'
# Load predict graph, and test predictions
with session.Session(graph=ops.Graph()) as sess:
inputs, outputs = load_model(sess, output_path,
model_fn_lib.ModeKeys.PREDICT)
predictions = sess.run(outputs[output_name],
{inputs[input_name]: input_arr})
self.assertAllClose(ref_predict, predictions, atol=1e-05)
if optimizer:
# Load eval graph, and test predictions, loss and metric values
with session.Session(graph=ops.Graph()) as sess:
inputs, outputs = load_model(sess, output_path,
model_fn_lib.ModeKeys.EVAL)
eval_results = sess.run(outputs, {inputs[input_name]: input_arr,
inputs[target_name]: target_arr})
self.assertEqual(int(train_before_export),
sess.run(training_module.get_global_step()))
self.assertAllClose(ref_loss, eval_results['loss'], atol=1e-05)
self.assertAllClose(
ref_mae, eval_results['metrics/mae/update_op'], atol=1e-05)
self.assertAllClose(
ref_predict, eval_results['predictions/' + output_name], atol=1e-05)
# Load train graph, and check for the train op, and prediction values
with session.Session(graph=ops.Graph()) as sess:
inputs, outputs = load_model(sess, output_path,
model_fn_lib.ModeKeys.TRAIN)
self.assertEqual(int(train_before_export),
sess.run(training_module.get_global_step()))
self.assertIn('loss', outputs)
self.assertIn('metrics/mae/update_op', outputs)
self.assertIn('metrics/mae/value', outputs)
self.assertIn('predictions/' + output_name, outputs)
# Train for a step
train_op = ops.get_collection(constants.TRAIN_OP_KEY)
train_outputs, _ = sess.run(
[outputs, train_op], {inputs[input_name]: input_arr,
inputs[target_name]: target_arr})
self.assertEqual(int(train_before_export) + 1,
sess.run(training_module.get_global_step()))
if uses_learning_phase:
self.assertAllClose(
[[0, 0, 0]], train_outputs['predictions/' + output_name],
atol=1e-05)
else:
self.assertNotAllClose(
[[0, 0, 0]], train_outputs['predictions/' + output_name],
atol=1e-05)
开发者ID:ThunderQi,项目名称:tensorflow,代码行数:80,代码来源:keras_saved_model_test.py
示例17: optimize_loss
def optimize_loss(loss,
global_step,
learning_rate,
optimizer,
gradient_noise_scale=None,
gradient_multipliers=None,
clip_gradients=None,
learning_rate_decay_fn=None,
update_ops=None,
variables=None,
name=None,
summaries=None,
colocate_gradients_with_ops=False,
increment_global_step=True):
"""Given loss and parameters for optimizer, returns a training op.
Various ways of passing optimizers include:
- by string specifying the name of the optimizer. See OPTIMIZER_CLS_NAMES
for full list. E.g. `optimize_loss(..., optimizer='Adam')`.
- by function taking learning rate `Tensor` as argument and returning an
`Optimizer` instance. E.g. `optimize_loss(...,
optimizer=lambda lr: tf.train.MomentumOptimizer(lr, momentum=0.5))`.
Alternatively, if `learning_rate` is `None`, the function takes no
arguments. E.g. `optimize_loss(..., learning_rate=None,
optimizer=lambda: tf.train.MomentumOptimizer(0.5, momentum=0.5))`.
- by a subclass of `Optimizer` having a single-argument constructor
(the argument is the learning rate), such as AdamOptimizer or
AdagradOptimizer. E.g. `optimize_loss(...,
optimizer=tf.train.AdagradOptimizer)`.
- by an instance of a subclass of `Optimizer`.
E.g., `optimize_loss(..., optimizer=tf.train.AdagradOptimizer(0.5))`.
Args:
loss: Scalar `Tensor`.
global_step: Scalar int `Tensor`, step counter to update on each step
unless `increment_global_step` is `False`. If not supplied,
it will be fetched from the default graph (see
`tf.train.get_global_step` for details). If it has
not been created, no step will be incremented with each weight
update. `learning_rate_decay_fn` requires `global_step`.
learning_rate: float or `Tensor`, magnitude of update per each training
step. Can be `None`.
optimizer: string, class or optimizer instance, used as trainer.
string should be name of optimizer, like 'SGD',
'Adam', 'Adagrad'. Full list in OPTIMIZER_CLS_NAMES constant.
class should be sub-class of `tf.Optimizer` that implements
`compute_gradients` and `apply_gradients` functions.
optimizer instance should be instantiation of `tf.Optimizer`
sub-class and have `compute_gradients` and `apply_gradients`
functions.
gradient_noise_scale: float or None, adds 0-mean normal noise scaled by this
value.
gradient_multipliers: dict of variables or variable names to floats.
If present, gradients for specified
variables will be multiplied by given constant.
clip_gradients: float, callable or `None`. If float, is provided, a global
clipping is applied to prevent the norm of the gradient to exceed this
value. Alternatively, a callable can be provided e.g.: adaptive_clipping.
This callable takes a `list` of `(gradients, variables)` `tuple`s and
returns the same thing with the gradients modified.
learning_rate_decay_fn: function, takes `learning_rate` and `global_step`
`Tensor`s, returns `Tensor`.
Can be used to implement any learning rate decay
functions.
For example: `tf.train.exponential_decay`.
Ignored if `learning_rate` is not supplied.
update_ops: list of update `Operation`s to execute at each step. If `None`,
uses elements of UPDATE_OPS collection. The order of execution
between `update_ops` and `loss` is non-deterministic.
variables: list of variables to optimize or
`None` to use all trainable variables.
name: The name for this operation is used to scope operations and summaries.
summaries: List of internal quantities to visualize on tensorboard. If not
set, the loss, the learning rate, and the global norm of the
gradients will be reported. The complete list of possible values
is in OPTIMIZER_SUMMARIES.
colocate_gradients_with_ops: If True, try colocating gradients with the
corresponding op.
increment_global_step: Whether to increment `global_step`. If your model
calls `optimize_loss` multiple times per training step (e.g. to optimize
different parts of the model), use this arg to avoid incrementing
`global_step` more times than necessary.
Returns:
Training op.
Raises:
ValueError: if:
* `loss` is an invalid type or shape.
* `global_step` is an invalid type or shape.
* `learning_rate` is an invalid type or value.
* `optimizer` has the wrong type.
* `clip_gradients` is neither float nor callable.
* `learning_rate` and `learning_rate_decay_fn` are supplied, but no
`global_step` is available.
* `gradients` is empty.
"""
loss = ops.convert_to_tensor(loss)
contrib_framework.assert_scalar(loss)
#.........这里部分代码省略.........
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:101,代码来源:optimizers.py
注:本文中的tensorflow.python.training.training.get_global_step函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论