• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python training.create_global_step函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.training.training.create_global_step函数的典型用法代码示例。如果您正苦于以下问题:Python create_global_step函数的具体用法?Python create_global_step怎么用?Python create_global_step使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了create_global_step函数的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: predict

  def predict(self, input_fn, predict_keys=None, hooks=None, checkpoint_path=None):
    """Returns predictions for given features.

    Args:
      input_fn: Input function returning features which is a dictionary of
        string feature name to `Tensor` or `SparseTensor`. If it returns a
        tuple, first item is extracted as features. Prediction continues until
        `input_fn` raises an end-of-input exception (`OutOfRangeError` or
        `StopIteration`).
      predict_keys: list of `str`, name of the keys to predict. It is used if
        the `EstimatorSpec.predictions` is a `dict`. If `predict_keys` is used
        then rest of the predictions will be filtered from the dictionary. If
        `None`, returns all.
      hooks: List of `SessionRunHook` subclass instances. Used for callbacks
        inside the prediction call.
      checkpoint_path: Path of a specific checkpoint to predict. If `None`, the
        latest checkpoint in `model_dir` is used.

    Yields:
      Evaluated values of `predictions` tensors.

    Raises:
      ValueError: Could not find a trained model in model_dir.
      ValueError: if batch length of predictions are not same.
      ValueError: If there is a conflict between `predict_keys` and
        `predictions`. For example if `predict_keys` is not `None` but
        `EstimatorSpec.predictions` is not a `dict`.
    """
    hooks = _check_hooks_type(hooks)
    # Check that model has been trained.
    if not checkpoint_path:
      checkpoint_path = saver.latest_checkpoint(self._model_dir)
    if not checkpoint_path:
      raise ValueError('Could not find trained model in model_dir: {}.'.format(
          self._model_dir))

    with ops.Graph().as_default() as g:
      random_seed.set_random_seed(self._config.tf_random_seed)
      training.create_global_step(g)
      features = self._get_features_from_input_fn(input_fn)
      estimator_spec = self._call_model_fn(features, None,
                                           model_fn_lib.ModeKeys.PREDICT)
      predictions = self._extract_keys(estimator_spec.predictions, predict_keys)
      with training.MonitoredSession(
          session_creator=training.ChiefSessionCreator(
              checkpoint_filename_with_path=checkpoint_path,
              scaffold=estimator_spec.scaffold,
              config=config_pb2.ConfigProto(allow_soft_placement=True)),
          hooks=hooks) as mon_sess:
        while not mon_sess.should_stop():
          preds_evaluated = mon_sess.run(predictions)
          if not isinstance(predictions, dict):
            for pred in preds_evaluated:
              yield pred
          else:
            for i in range(self._extract_batch_length(preds_evaluated)):
              yield {
                  key: value[i]
                  for key, value in six.iteritems(preds_evaluated)
              }
开发者ID:LugarkPirog,项目名称:tensorflow,代码行数:60,代码来源:estimator.py


示例2: test_build_all_summaries

    def test_build_all_summaries(self):
        training.create_global_step()
        x = {'x': tf.placeholder(tf.float32, [2, 89])}
        y = tf.constant([[1], [1]])

        model = BaseModel(plx.Modes.TRAIN, graph_fn=self.get_dummy_graph_fn(),
                          loss_config=LossConfig(module='log_loss'),
                          optimizer_config=OptimizerConfig(module='adadelta',
                                                           decay_type='exponential_decay'),
                          model_type=BaseModel.Types.CLASSIFIER, eval_metrics_config=[],
                          summaries='all', name='test')

        model(x, y, None, None)

        # Only var are created
        learning_rate_summaries = 0
        activations_summaries = 0
        gradients_summaries = 0
        loss_summaries = 0

        for s_name in get_tracked(collection=tf.GraphKeys.SUMMARIES_BY_NAMES).keys():
            if 'learning_rate' in s_name:
                learning_rate_summaries += 1
            elif 'Activation' in s_name:
                activations_summaries += 1
            elif 'Loss' in s_name:
                loss_summaries += 1
            elif 'Gradient' in s_name:
                gradients_summaries += 1

        assert learning_rate_summaries > 0
        assert activations_summaries > 0
        assert gradients_summaries > 0
        assert loss_summaries > 0
开发者ID:AlexMikhalev,项目名称:polyaxon,代码行数:34,代码来源:test_base_models.py


示例3: _train_model

  def _train_model(self, input_fn, hooks):
    all_hooks = []
    with ops.Graph().as_default() as g, g.device(self._device_fn):
      random_seed.set_random_seed(self._config.tf_random_seed)
      global_step_tensor = training.create_global_step(g)
      with ops.device('/cpu:0'):
        features, labels = input_fn()
      estimator_spec = self._call_model_fn(features, labels,
                                           model_fn_lib.ModeKeys.TRAIN)
      ops.add_to_collection(ops.GraphKeys.LOSSES, estimator_spec.loss)
      all_hooks.extend([
          training.NanTensorHook(estimator_spec.loss),
          training.LoggingTensorHook(
              {
                  'loss': estimator_spec.loss,
                  'step': global_step_tensor
              },
              every_n_iter=100)
      ])
      all_hooks.extend(hooks)
      all_hooks.extend(estimator_spec.training_hooks)

      if not (estimator_spec.scaffold.saver or
              ops.get_collection(ops.GraphKeys.SAVERS)):
        ops.add_to_collection(ops.GraphKeys.SAVERS,
                              training.Saver(
                                  sharded=True,
                                  max_to_keep=self._config.keep_checkpoint_max,
                                  defer_build=True))

      chief_hooks = []
      if (self._config.save_checkpoints_secs or
          self._config.save_checkpoints_steps):
        saver_hook_exists = any([
            isinstance(h, training.CheckpointSaverHook)
            for h in (all_hooks + chief_hooks +
                      estimator_spec.training_chief_hooks)
        ])
        if not saver_hook_exists:
          chief_hooks = [
              training.CheckpointSaverHook(
                  self._model_dir,
                  save_secs=self._config.save_checkpoints_secs,
                  save_steps=self._config.save_checkpoints_steps,
                  scaffold=estimator_spec.scaffold)
          ]
      with training.MonitoredTrainingSession(
          master=self._config.master,
          is_chief=self._config.is_chief,
          checkpoint_dir=self._model_dir,
          scaffold=estimator_spec.scaffold,
          hooks=all_hooks,
          chief_only_hooks=chief_hooks + estimator_spec.training_chief_hooks,
          save_checkpoint_secs=0,  # Saving is handled by a hook.
          save_summaries_steps=self._config.save_summary_steps,
          config=config_pb2.ConfigProto(allow_soft_placement=True)) as mon_sess:
        loss = None
        while not mon_sess.should_stop():
          _, loss = mon_sess.run([estimator_spec.train_op, estimator_spec.loss])
      return loss
开发者ID:LugarkPirog,项目名称:tensorflow,代码行数:60,代码来源:estimator.py


示例4: _evaluate_model

  def _evaluate_model(self,
                      input_fn,
                      hooks=None,
                      checkpoint_path=None,
                      name=''):
    """Evaluates the model using the training.evaluation library."""
    # Check that model has been trained (if nothing has been set explicitly).
    if not checkpoint_path:
      latest_path = saver.latest_checkpoint(self._model_dir)
      if not latest_path:
        raise ValueError('Could not find trained model in model_dir: {}.'.
                         format(self._model_dir))
      checkpoint_path = latest_path

    # Setup output directory.
    eval_dir = os.path.join(self._model_dir, 'eval' if not name else
                            'eval_' + name)

    with ops.Graph().as_default() as g:
      random_seed.set_random_seed(self._config.tf_random_seed)
      global_step_tensor = training.create_global_step(g)
      features, labels = input_fn()
      estimator_spec = self._call_model_fn(
          features, labels, model_fn_lib.ModeKeys.EVAL)

      if model_fn_lib.MetricKeys.LOSS in estimator_spec.eval_metric_ops:
        raise ValueError(
            'Metric with name "%s" is not allowed, because Estimator ' % (
                model_fn_lib.MetricKeys.LOSS) +
            'already defines a default metric with the same name.')
      estimator_spec.eval_metric_ops[
          model_fn_lib.MetricKeys.LOSS] = metrics_lib.mean(estimator_spec.loss)

      update_op, eval_dict = _extract_metric_update_ops(
          estimator_spec.eval_metric_ops)

      if ops.GraphKeys.GLOBAL_STEP in eval_dict:
        raise ValueError(
            'Metric with name `global_step` is not allowed, because Estimator '
            'already defines a default metric with the same name.')
      eval_dict[ops.GraphKeys.GLOBAL_STEP] = global_step_tensor

      eval_results = evaluation._evaluate_once(  # pylint: disable=protected-access
          checkpoint_path=checkpoint_path,
          master=self._config.evaluation_master,
          scaffold=estimator_spec.scaffold,
          eval_ops=update_op,
          final_ops=eval_dict,
          hooks=hooks,
          config=self._session_config)

      _write_dict_to_summary(
          output_dir=eval_dir,
          dictionary=eval_results,
          current_global_step=eval_results[ops.GraphKeys.GLOBAL_STEP])

    return eval_results
开发者ID:xylary,项目名称:tensorflow,代码行数:57,代码来源:estimator.py


示例5: test_build_learning_rate_summaries

    def test_build_learning_rate_summaries(self):
        training.create_global_step()
        x = {'x': tf.placeholder(tf.float32, [2, 89])}
        y = tf.constant([[1], [1]])

        model = BaseModel(plx.Modes.TRAIN, graph_fn=self.get_dummy_graph_fn(),
                          loss_config=LossConfig(module='log_loss'),
                          optimizer_config=OptimizerConfig(module='adadelta',
                                                           decay_type='exponential_decay'),
                          model_type=BaseModel.Types.CLASSIFIER, eval_metrics_config=[],
                          summaries=['learning_rate'], name='test')

        model(x, y, None, None)

        # Only var are created
        summaries_names = list(get_tracked(collection=tf.GraphKeys.SUMMARIES_BY_NAMES).keys())
        assert len(summaries_names) == 1
        assert summaries_names[0] == 'learning_rate'
开发者ID:AlexMikhalev,项目名称:polyaxon,代码行数:18,代码来源:test_base_models.py


示例6: _create_global_step

  def _create_global_step(self, graph):
    """Creates the global step tensor in graph.

    The global step tensor must be an integer type with name 'global_step' and
    be added to the collection ${tf.GraphKeys.GLOBAL_STEP}.

    Args:
      graph: The graph in which to create the global step tensor.

    Returns:
      The global step `Tensor`.
    """
    return training.create_global_step(graph)
开发者ID:ilya-edrenkin,项目名称:tensorflow,代码行数:13,代码来源:estimator.py


示例7: test_do_not_stop_if_checkpoint_is_not_there

 def test_do_not_stop_if_checkpoint_is_not_there(self):
   with ops.Graph().as_default():
     step = training.create_global_step()
     assign_ten = step.assign(10)
     no_op = control_flow_ops.no_op()
     hook = hooks_lib._StopAtCheckpointStepHook(
         model_dir=tempfile.mkdtemp(), last_step=10)
     with training.SingularMonitoredSession(hooks=[hook]) as mon_sess:
       mon_sess.raw_session().run(assign_ten)
       with test.mock.patch.object(time, 'sleep') as mock_sleep:
         mon_sess.run(no_op)
         self.assertTrue(mock_sleep.called)
       self.assertFalse(mon_sess.should_stop())
开发者ID:AnishShah,项目名称:tensorflow,代码行数:13,代码来源:hooks_test.py


示例8: _evaluate_model

    def _evaluate_model(self, input_fn, hooks=None, checkpoint_path=None, name=''):
        # Check that model has been trained (if nothing has been set explicitly).
        if not checkpoint_path:
            latest_path = saver.latest_checkpoint(self._model_dir)
            if not latest_path:
                error_message = "Could not find trained model at {}.".format(self._model_dir)
                raise EstimatorNotTrainedError(error_message)
            checkpoint_path = latest_path

        # Setup output directory.
        eval_dir = os.path.join(self._model_dir, 'eval' if not name else 'eval_' + name)

        with ops.Graph().as_default() as g:
            random_seed.set_random_seed(self._config.tf_random_seed)
            global_step = training.create_global_step(g)
            features, labels = input_fn()

            estimator_spec = self._call_model_fn(features, labels, Modes.EVAL)
            if MetricKeys.LOSS in estimator_spec.eval_metric_ops:
                raise ValueError("Metric with name `{}` is not allowed, because Estimator "
                                 "already defines a default metric "
                                 "with the same name.".format(MetricKeys.LOSS))
            estimator_spec.eval_metric_ops[
                MetricKeys.LOSS] = metrics_lib.streaming_mean(estimator_spec.loss)
            update_op, eval_dict = self._extract_metric_update_ops(estimator_spec.eval_metric_ops)

            if ops.GraphKeys.GLOBAL_STEP in eval_dict:
                raise ValueError("Metric with name `global_step` is not allowed, because "
                                 "Estimator already defines a default metric with the same name.")
            eval_dict[ops.GraphKeys.GLOBAL_STEP] = global_step

            eval_results = evaluation._evaluate_once(
                checkpoint_path=checkpoint_path,
                master=self._config.evaluation_master,
                scaffold=estimator_spec.scaffold,
                eval_ops=update_op,
                final_ops=eval_dict,
                hooks=hooks,
                config=self._session_config)

            self._write_dict_to_summary(
                output_dir=eval_dir,
                dictionary=eval_results,
                current_global_step=eval_results[ops.GraphKeys.GLOBAL_STEP])

            return eval_results
开发者ID:AlexMikhalev,项目名称:polyaxon,代码行数:46,代码来源:estimator.py


示例9: export_savedmodel

  def export_savedmodel(
      self, export_dir_base, serving_input_receiver_fn,
      assets_extra=None,
      as_text=False,
      checkpoint_path=None):
    """Exports inference graph as a SavedModel into given dir.

    This method builds a new graph by first calling the
    serving_input_receiver_fn to obtain feature `Tensor`s, and then calling
    this `Estimator`'s model_fn to generate the model graph based on those
    features. It restores the given checkpoint (or, lacking that, the most
    recent checkpoint) into this graph in a fresh session.  Finally it creates
    a timestamped export directory below the given export_dir_base, and writes
    a `SavedModel` into it containing a single `MetaGraphDef` saved from this
    session.

    The exported `MetaGraphDef` will provide one `SignatureDef` for each
    element of the export_outputs dict returned from the model_fn, named using
    the same keys.  One of these keys is always
    signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY, indicating which
    signature will be served when a serving request does not specify one.
    For each signature, the outputs are provided by the corresponding
    `ExportOutput`s, and the inputs are always the input receivers provided by
    the serving_input_receiver_fn.

    Extra assets may be written into the SavedModel via the extra_assets
    argument.  This should be a dict, where each key gives a destination path
    (including the filename) relative to the assets.extra directory.  The
    corresponding value gives the full path of the source file to be copied.
    For example, the simple case of copying a single file without renaming it
    is specified as `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`.

    Args:
      export_dir_base: A string containing a directory in which to create
        timestamped subdirectories containing exported SavedModels.
      serving_input_receiver_fn: A function that takes no argument and
        returns a `ServingInputReceiver`.
      assets_extra: A dict specifying how to populate the assets.extra directory
        within the exported SavedModel, or `None` if no extra assets are needed.
      as_text: whether to write the SavedModel proto in text format.
      checkpoint_path: The checkpoint path to export.  If `None` (the default),
        the most recent checkpoint found within the model directory is chosen.

    Returns:
      The string path to the exported directory.

    Raises:
      ValueError: if no serving_input_receiver_fn is provided, no export_outputs
          are provided, or no checkpoint can be found.
    """
    if serving_input_receiver_fn is None:
      raise ValueError('serving_input_receiver_fn must be defined.')

    with ops.Graph().as_default() as g:
      training.create_global_step(g)
      random_seed.set_random_seed(self._config.tf_random_seed)
      serving_input_receiver = serving_input_receiver_fn()

      # Call the model_fn and collect the export_outputs.
      estimator_spec = self._call_model_fn(
          features=serving_input_receiver.features,
          labels=None,
          mode=model_fn_lib.ModeKeys.PREDICT)

      # Build the SignatureDefs from receivers and all outputs
      signature_def_map = build_all_signature_defs(
          serving_input_receiver.receiver_tensors,
          estimator_spec.export_outputs)

      if not checkpoint_path:
        # Locate the latest checkpoint
        checkpoint_path = saver.latest_checkpoint(self._model_dir)
      if not checkpoint_path:
        raise ValueError("Couldn't find trained model at %s." % self._model_dir)

      export_dir = get_timestamped_export_dir(export_dir_base)

      # TODO(soergel): Consider whether MonitoredSession makes sense here
      with tf_session.Session() as session:

        saver_for_restore = estimator_spec.scaffold.saver or saver.Saver(
            sharded=True)
        saver_for_restore.restore(session, checkpoint_path)

        # TODO(b/36111876): replace legacy_init_op with main_op mechanism
        # pylint: disable=protected-access
        local_init_op = (
            estimator_spec.scaffold.local_init_op or
            monitored_session.Scaffold._default_local_init_op())
        # pylint: enable=protected-access

        # Perform the export
        builder = saved_model_builder.SavedModelBuilder(export_dir)
        builder.add_meta_graph_and_variables(
            session, [tag_constants.SERVING],
            signature_def_map=signature_def_map,
            assets_collection=ops.get_collection(
                ops.GraphKeys.ASSET_FILEPATHS),
            legacy_init_op=local_init_op)
        builder.save(as_text)
#.........这里部分代码省略.........
开发者ID:xylary,项目名称:tensorflow,代码行数:101,代码来源:estimator.py


示例10: _TestQuantize_Conv2dWithoutBatchNorm

  def _TestQuantize_Conv2dWithoutBatchNorm(self, activation, activation_op_name,
                                           with_bypass, delay):
    """Tests quantization: inputs -> Conv2d no batch norm -> Activation.

    Args:
      activation: Callable that returns an Operation, a factory method for the
        Activation.
      activation_op_name: String, name of the Activation operation.
      with_bypass: Bool, when true there is an extra connection added from
        inputs to just before Activation.
      delay: Int (optional), delay in number of steps until quantization starts.
    """
    graph = ops.Graph()
    with graph.as_default():
      training.create_global_step(graph)

      batch_size, height, width, depth = 5, 128, 128, 3
      inputs = array_ops.zeros((batch_size, height, width, depth))
      stride = 1 if with_bypass else 2
      out_depth = 3 if with_bypass else 32
      activation_fn = None if with_bypass else activation
      scope = 'test/test2' if with_bypass else 'test'
      node = conv2d(inputs, out_depth, [5, 5], stride=stride, padding='SAME',
                    weights_initializer=self._WeightInit(0.09),
                    activation_fn=activation_fn, scope=scope)
      if with_bypass:
        node = math_ops.add(inputs, node, name='test/Add')
        node = activation(node, name='test/' + activation_op_name)
      update_barrier = control_flow_ops.no_op(name='update_barrier')
      with ops.control_dependencies([update_barrier]):
        array_ops.identity(node, name='control_dependency')

      quantize.Quantize(graph, quant_delay=delay)
    quantization_node_name = 'FakeQuantWithMinMaxVars'
    weights_quant = graph.get_operation_by_name(scope + '/weights_quant/' +
                                                quantization_node_name)
    self.assertEqual(weights_quant.type, quantization_node_name)
    expected_inputs = [
        scope + '/weights_quant/Minimum', scope + '/weights_quant/Maximum',
        scope + '/weights/read'
    ]
    self._AssertInputOpsAre(weights_quant, expected_inputs)
    output_op_name = scope + '/convolution'
    self._AssertOutputGoesToOps(weights_quant, graph, [output_op_name])

    if with_bypass:
      conv_quant = graph.get_operation_by_name(scope + '/conv_quant/' +
                                               quantization_node_name)
      self.assertEqual(conv_quant.type, quantization_node_name)
      expected_inputs = [
          scope + '/conv_quant/min/read', scope + '/conv_quant/max/read',
          scope + '/BiasAdd'
      ]
      self._AssertInputOpsAre(conv_quant, expected_inputs)
      output_op_name = (scope + '/conv_quant/delayed_quant/Switch_1'
                        if delay else 'test/Add')
      self._AssertOutputGoesToOps(conv_quant, graph, [output_op_name])

    act_quant = graph.get_operation_by_name('test/act_quant/' +
                                            quantization_node_name)
    self.assertEqual(act_quant.type, quantization_node_name)

    expected_inputs = [
        'test/act_quant/min/read', 'test/act_quant/max/read',
        'test/' + activation_op_name
    ]
    self._AssertInputOpsAre(act_quant, expected_inputs)
    output_op_name = ('test/act_quant/delayed_quant/Switch_1'
                      if delay else 'control_dependency')
    self._AssertOutputGoesToOps(act_quant, graph, [output_op_name])
开发者ID:DjangoPeng,项目名称:tensorflow,代码行数:70,代码来源:quantize_parameterized_test.py


示例11: _testQuantize_DepthwiseConv2dWithBatchNorm

  def _testQuantize_DepthwiseConv2dWithBatchNorm(
      self, activation, activation_op_name, with_bypass, delay,
      fused_batch_norm, use_ema):
    """Tests quantization: inputs -> DWConv2d with batch norm -> Activation.

    Args:
      activation: Callable that returns an Operation, a factory method for the
        Activation.
      activation_op_name: String, name of the Activation operation.
      with_bypass: Bool, when true there is an extra connection added from
        inputs to just before Activation.
      delay: Int (optional), delay in number of steps until quantization starts.
      fused_batch_norm: Bool, when true use FusedBatchNorm.
      use_ema: Bool, when true uses EMA quantization for BN folded weights.
    """
    graph = ops.Graph()
    with graph.as_default():
      training.create_global_step(graph)

      batch_size, height, width, depth = 5, 128, 128, 3
      inputs = array_ops.zeros((batch_size, height, width, depth))
      stride = 1 if with_bypass else 2
      scope = 'test/test2' if with_bypass else 'test'
      node = separable_conv2d(
          inputs,
          None, [5, 5],
          stride=stride,
          depth_multiplier=1.0,
          padding='SAME',
          weights_initializer=self._WeightInit(0.09),
          activation_fn=None,
          normalizer_fn=batch_norm,
          normalizer_params=self._BatchNormParams(fused_batch_norm),
          scope=scope)

      # Manually add a bypass (optionaly) and an activation.
      if with_bypass:
        node = math_ops.add(inputs, node, name='test/Add')

      node = activation(node, name='test/' + activation_op_name)

      update_barrier = control_flow_ops.no_op(name='update_barrier')
      with ops.control_dependencies([update_barrier]):
        array_ops.identity(node, name='control_dependency')

      fold_batch_norms.FoldBatchNorms(graph)

      quantize.Quantize(
          graph, quant_delay=delay, quantize_folded_weights_use_ema=use_ema)
    quantization_node_name = 'FakeQuantWithMinMaxVars'
    weights_quant = graph.get_operation_by_name(scope + '/weights_quant/' +
                                                quantization_node_name)
    self.assertEqual(weights_quant.type, quantization_node_name)
    expected_inputs = [
        scope + '/weights_quant/' + ('min/read' if use_ema else 'Minimum'),
        scope + '/weights_quant/' + ('max/read' if use_ema else 'Maximum'),
        scope + '/mul_fold'
    ]
    self._AssertInputOpsAre(weights_quant, expected_inputs)
    output_op_name = scope + ('/weights_quant/delayed_quant/Switch_1'
                              if delay and use_ema else '/depthwise_Fold')
    self._AssertOutputGoesToOps(weights_quant, graph, [output_op_name])

    if with_bypass:
      conv_quant = graph.get_operation_by_name(scope + '/conv_quant/' +
                                               quantization_node_name)
      self.assertEqual(conv_quant.type, quantization_node_name)
      expected_inputs = [
          scope + '/conv_quant/min/read', scope + '/conv_quant/max/read',
          scope + '/add_fold'
      ]
      self._AssertInputOpsAre(conv_quant, expected_inputs)
      output_op_name = (scope + '/conv_quant/delayed_quant/Switch_1'
                        if delay else 'test/Add')
      self._AssertOutputGoesToOps(conv_quant, graph, [output_op_name])

    act_quant = graph.get_operation_by_name('test/act_quant/' +
                                            quantization_node_name)
    self.assertEqual(act_quant.type, quantization_node_name)
    expected_inputs = [
        'test/act_quant/min/read', 'test/act_quant/max/read',
        'test/' + activation_op_name
    ]
    self._AssertInputOpsAre(act_quant, expected_inputs)
    output_op_name = ('test/act_quant/delayed_quant/Switch_1'
                      if delay else 'control_dependency')
    self._AssertOutputGoesToOps(act_quant, graph, [output_op_name])
开发者ID:DjangoPeng,项目名称:tensorflow,代码行数:87,代码来源:quantize_parameterized_test.py


示例12: _testQuantize_FCWithBatchNorm

  def _testQuantize_FCWithBatchNorm(self, activation, activation_op_name,
                                    with_bypass, delay, use_ema):
    """Tests quantization: inputs -> FC with batch norm -> Activation.

    Args:
      activation: Callable that returns an Operation, a factory method for the
        Activation.
      activation_op_name: String, name of the Activation operation.
      with_bypass: Bool, when true there is an extra connection added from
        inputs to just before Activation.
      delay: Int (optional), delay in number of steps until quantization starts.
      use_ema: Bool, when true uses EMA quantization for BN folded weights.
    """
    graph = ops.Graph()
    with graph.as_default():
      training.create_global_step(graph)

      batch_size, depth = 5, 256
      inputs = array_ops.zeros((batch_size, depth))
      out_depth = 256 if with_bypass else 128
      scope = 'test/test2' if with_bypass else 'test'
      node = fully_connected(inputs, out_depth,
                             weights_initializer=self._WeightInit(0.03),
                             activation_fn=None,
                             normalizer_fn=batch_norm,
                             normalizer_params=_DEFAULT_BATCH_NORM_PARAMS,
                             scope=scope)
      # Manually fold the batch norm.
      weights = graph.get_operation_by_name(scope + '/weights/read').outputs[0]
      bn_mult = (graph.get_operation_by_name(scope + '/BatchNorm/batchnorm/mul')
                 .outputs[0])
      mul_fold = math_ops.multiply(weights, bn_mult, name=scope + '/mul_fold')
      fc_fold = math_ops.matmul(inputs, mul_fold, name=scope + '/MatMul_Fold')
      bn_bias = (graph.get_operation_by_name(scope + '/BatchNorm/batchnorm/sub')
                 .outputs[0])
      add_fold = math_ops.add(fc_fold, bn_bias, name=scope + '/add_fold')
      # Manually add a bypass (optionaly) and an activation.
      if with_bypass:
        node = math_ops.add(inputs, add_fold, name='test/Add')
      else:
        node = add_fold
      node = activation(node, name='test/' + activation_op_name)

      update_barrier = control_flow_ops.no_op(name='update_barrier')
      with ops.control_dependencies([update_barrier]):
        array_ops.identity(node, name='control_dependency')

      quantize.Quantize(
          graph, quant_delay=delay, quantize_folded_weights_use_ema=use_ema)

    quantization_node_name = 'FakeQuantWithMinMaxVars'
    weights_quant = graph.get_operation_by_name(scope + '/weights_quant/' +
                                                quantization_node_name)
    self.assertEqual(weights_quant.type, quantization_node_name)
    expected_inputs = [
        scope + '/weights_quant/' + ('min/read' if use_ema else 'Minimum'),
        scope + '/weights_quant/' + ('max/read' if use_ema else 'Maximum'),
        scope + '/mul_fold'
    ]
    self._AssertInputOpsAre(weights_quant, expected_inputs)
    output_op_name = scope + ('/weights_quant/delayed_quant/Switch_1'
                              if delay and use_ema else '/MatMul_Fold')
    self._AssertOutputGoesToOps(weights_quant, graph, [output_op_name])

    if with_bypass:
      conv_quant = graph.get_operation_by_name(scope + '/conv_quant/' +
                                               quantization_node_name)
      self.assertEqual(conv_quant.type, quantization_node_name)
      expected_inputs = [
          scope + '/conv_quant/min/read', scope + '/conv_quant/max/read',
          scope + '/add_fold'
      ]
      self._AssertInputOpsAre(conv_quant, expected_inputs)
      output_op_name = (scope + '/conv_quant/delayed_quant/Switch_1'
                        if delay else 'test/Add')
      self._AssertOutputGoesToOps(conv_quant, graph, [output_op_name])

    act_quant = graph.get_operation_by_name('test/act_quant/' +
                                            quantization_node_name)
    self.assertEqual(act_quant.type, quantization_node_name)
    expected_inputs = [
        'test/act_quant/min/read', 'test/act_quant/max/read',
        'test/' + activation_op_name
    ]
    self._AssertInputOpsAre(act_quant, expected_inputs)
    output_op_name = ('test/act_quant/delayed_quant/Switch_1'
                      if delay else 'control_dependency')
    self._AssertOutputGoesToOps(act_quant, graph, [output_op_name])
开发者ID:Mazecreator,项目名称:tensorflow,代码行数:88,代码来源:quantize_parameterized_test.py



注:本文中的tensorflow.python.training.training.create_global_step函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python training.get_global_step函数代码示例发布时间:2022-05-27
下一篇:
Python summary_io.SummaryWriterCache类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap