本文整理汇总了Python中tensorflow.python.platform.test.gpu_device_name函数的典型用法代码示例。如果您正苦于以下问题:Python gpu_device_name函数的具体用法?Python gpu_device_name怎么用?Python gpu_device_name使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了gpu_device_name函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: _VerifyBuildGraph
def _VerifyBuildGraph(self, n, m, k, transpose_a, transpose_b, dtype):
graph = ops.Graph()
with graph.as_default():
matmul_benchmark.build_graph(googletest.gpu_device_name(), n, m, k, transpose_a, transpose_b,
dtype)
gd = graph.as_graph_def()
dev=googletest.gpu_device_name()
proto_expected = """
node { name: "random_uniform/shape" op: "Const" device: \""""+ dev +"""\" }
node { name: "random_uniform/min" op: "Const" device: \""""+ dev +"""\" }
node { name: "random_uniform/max" op: "Const" device: \""""+ dev +"""\" }
node { name: "random_uniform/RandomUniform" op: "RandomUniform" input: "random_uniform/shape" device: \""""+ dev +"""\" }
node { name: "random_uniform/sub" op: "Sub" input: "random_uniform/max" input: "random_uniform/min" device: \""""+ dev +"""\" }
node { name: "random_uniform/mul" op: "Mul" input: "random_uniform/RandomUniform" input: "random_uniform/sub" device: \""""+ dev +"""\" }
node { name: "random_uniform" op: "Add" input: "random_uniform/mul" input: "random_uniform/min" device: \""""+ dev +"""\" }
node { name: "Variable" op: "VariableV2" device: \""""+ dev +"""\" }
node { name: "Variable/Assign" op: "Assign" input: "Variable" input: "random_uniform" device: \""""+ dev +"""\" }
node { name: "Variable/read" op: "Identity" input: "Variable" device: \""""+ dev +"""\" }
node { name: "random_uniform_1/shape" op: "Const" device: \""""+ dev +"""\" }
node { name: "random_uniform_1/min" op: "Const" device: \""""+ dev +"""\" }
node { name: "random_uniform_1/max" op: "Const" device: \""""+ dev +"""\" }
node { name: "random_uniform_1/RandomUniform" op: "RandomUniform" input: "random_uniform_1/shape" device: \""""+ dev +"""\" }
node { name: "random_uniform_1/sub" op: "Sub" input: "random_uniform_1/max" input: "random_uniform_1/min" device: \""""+ dev +"""\" }
node { name: "random_uniform_1/mul" op: "Mul" input: "random_uniform_1/RandomUniform" input: "random_uniform_1/sub" device: \""""+ dev +"""\" }
node { name: "random_uniform_1" op: "Add" input: "random_uniform_1/mul" input: "random_uniform_1/min" device: \""""+ dev +"""\" }
node { name: "Variable_1" op: "VariableV2" device: \""""+ dev +"""\" }
node { name: "Variable_1/Assign" op: "Assign" input: "Variable_1" input: "random_uniform_1" device: \""""+ dev +"""\" }
node { name: "Variable_1/read" op: "Identity" input: "Variable_1" device: \""""+ dev +"""\" }
node { name: "MatMul" op: "MatMul" input: "Variable/read" input: "Variable_1/read" device: \""""+ dev +"""\" }
node { name: "group_deps" op: "NoOp" input: "^MatMul" device: \""""+ dev +"""\" }
"""
self.assertProtoEquals(str(proto_expected), self._StripGraph(gd))
开发者ID:1000sprites,项目名称:tensorflow,代码行数:32,代码来源:matmul_benchmark_test.py
示例2: testDictionary
def testDictionary(self):
with ops.Graph().as_default() as G:
with ops.device('/cpu:0'):
x = array_ops.placeholder(dtypes.float32)
pi = array_ops.placeholder(dtypes.int64)
gi = array_ops.placeholder(dtypes.int64)
v = 2. * (array_ops.zeros([128, 128]) + x)
with ops.device(test.gpu_device_name()):
stager = data_flow_ops.MapStagingArea(
[dtypes.float32, dtypes.float32],
shapes=[[], [128, 128]],
names=['x', 'v'])
stage = stager.put(pi, {'x': x, 'v': v})
key, ret = stager.get(gi)
z = ret['x']
y = ret['v']
y = math_ops.reduce_max(z * math_ops.matmul(y, y))
G.finalize()
with self.session(use_gpu=True, graph=G) as sess:
sess.run(stage, feed_dict={x: -1, pi: 0})
for i in range(10):
_, yval = sess.run([stage, y], feed_dict={x: i, pi: i + 1, gi: i})
self.assertAllClose(
4 * (i - 1) * (i - 1) * (i - 1) * 128, yval, rtol=1e-4)
开发者ID:abhinav-upadhyay,项目名称:tensorflow,代码行数:26,代码来源:map_stage_op_test.py
示例3: testDeviceWrapperDynamicExecutionNodesAreAllProperlyLocated
def testDeviceWrapperDynamicExecutionNodesAreAllProperlyLocated(self):
if not test.is_gpu_available():
# Can't perform this test w/o a GPU
return
gpu_dev = test.gpu_device_name()
with self.test_session(use_gpu=True) as sess:
with variable_scope.variable_scope(
"root", initializer=init_ops.constant_initializer(0.5)):
x = array_ops.zeros([1, 1, 3])
cell = rnn_cell_impl.DeviceWrapper(rnn_cell_impl.GRUCell(3), gpu_dev)
with ops.device("/cpu:0"):
outputs, _ = rnn.dynamic_rnn(
cell=cell, inputs=x, dtype=dtypes.float32)
run_metadata = config_pb2.RunMetadata()
opts = config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE)
sess.run([variables_lib.global_variables_initializer()])
_ = sess.run(outputs, options=opts, run_metadata=run_metadata)
step_stats = run_metadata.step_stats
ix = 0 if gpu_dev in step_stats.dev_stats[0].device else 1
gpu_stats = step_stats.dev_stats[ix].node_stats
cpu_stats = step_stats.dev_stats[1 - ix].node_stats
self.assertFalse([s for s in cpu_stats if "gru_cell" in s.node_name])
self.assertTrue([s for s in gpu_stats if "gru_cell" in s.node_name])
开发者ID:Dr4KK,项目名称:tensorflow,代码行数:27,代码来源:core_rnn_cell_test.py
示例4: testPeek
def testPeek(self):
with ops.Graph().as_default() as G:
with ops.device('/cpu:0'):
x = array_ops.placeholder(dtypes.int32, name='x')
pi = array_ops.placeholder(dtypes.int64)
gi = array_ops.placeholder(dtypes.int64)
p = array_ops.placeholder(dtypes.int32, name='p')
with ops.device(test.gpu_device_name()):
stager = data_flow_ops.MapStagingArea(
[
dtypes.int32,
], shapes=[[]])
stage = stager.put(pi, [x], [0])
peek = stager.peek(gi)
size = stager.size()
G.finalize()
n = 10
with self.session(use_gpu=True, graph=G) as sess:
for i in range(n):
sess.run(stage, feed_dict={x: i, pi: i})
for i in range(n):
self.assertTrue(sess.run(peek, feed_dict={gi: i})[0] == i)
self.assertTrue(sess.run(size) == 10)
开发者ID:abhinav-upadhyay,项目名称:tensorflow,代码行数:28,代码来源:map_stage_op_test.py
示例5: testSizeAndClear
def testSizeAndClear(self):
with ops.Graph().as_default() as G:
with ops.device('/cpu:0'):
x = array_ops.placeholder(dtypes.float32, name='x')
pi = array_ops.placeholder(dtypes.int64)
gi = array_ops.placeholder(dtypes.int64)
v = 2. * (array_ops.zeros([128, 128]) + x)
with ops.device(test.gpu_device_name()):
stager = data_flow_ops.MapStagingArea(
[dtypes.float32, dtypes.float32],
shapes=[[], [128, 128]],
names=['x', 'v'])
stage = stager.put(pi, {'x': x, 'v': v})
size = stager.size()
clear = stager.clear()
G.finalize()
with self.session(use_gpu=True, graph=G) as sess:
sess.run(stage, feed_dict={x: -1, pi: 3})
self.assertEqual(sess.run(size), 1)
sess.run(stage, feed_dict={x: -1, pi: 1})
self.assertEqual(sess.run(size), 2)
sess.run(clear)
self.assertEqual(sess.run(size), 0)
开发者ID:abhinav-upadhyay,项目名称:tensorflow,代码行数:25,代码来源:map_stage_op_test.py
示例6: testAllocationHistory
def testAllocationHistory(self):
if not test.is_gpu_available(cuda_only=True):
return
gpu_dev = test.gpu_device_name()
ops.reset_default_graph()
with ops.device(gpu_dev):
_, run_meta = _run_model()
mm = _extract_node(run_meta, 'MatMul')['gpu:0'][0]
mm_allocs = mm.memory[0].allocation_records
# has allocation and deallocation.
self.assertEqual(len(mm_allocs), 2)
# first allocated.
self.assertGreater(mm_allocs[1].alloc_micros, mm_allocs[0].alloc_micros)
self.assertGreater(mm_allocs[0].alloc_bytes, 0)
# Then deallocated.
self.assertLess(mm_allocs[1].alloc_bytes, 0)
# All memory deallocated.
self.assertEqual(mm_allocs[0].alloc_bytes + mm_allocs[1].alloc_bytes, 0)
rand = _extract_node(
run_meta, 'random_normal/RandomStandardNormal')['gpu:0'][0]
random_allocs = rand.memory[0].allocation_records
# random normal must allocated first since matmul depends on it.
self.assertLess(random_allocs[0].alloc_micros, mm.all_start_micros)
# deallocates the memory after matmul started.
self.assertGreater(random_allocs[1].alloc_micros, mm.all_start_micros)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:28,代码来源:run_metadata_test.py
示例7: testCapacity
def testCapacity(self):
capacity = 3
with ops.Graph().as_default() as G:
with ops.device('/cpu:0'):
x = array_ops.placeholder(dtypes.int32, name='x')
with ops.device(test.gpu_device_name()):
stager = data_flow_ops.StagingArea(
[
dtypes.int32,
], capacity=capacity, shapes=[[]])
stage = stager.put([x])
ret = stager.get()
size = stager.size()
G.finalize()
from six.moves import queue as Queue
import threading
queue = Queue.Queue()
n = 8
with self.test_session(use_gpu=True, graph=G) as sess:
# Stage data in a separate thread which will block
# when it hits the staging area's capacity and thus
# not fill the queue with n tokens
def thread_run():
for i in range(n):
sess.run(stage, feed_dict={x: i})
queue.put(0)
t = threading.Thread(target=thread_run)
t.daemon = True
t.start()
# Get tokens from the queue until a timeout occurs
try:
for i in range(n):
queue.get(timeout=TIMEOUT)
except Queue.Empty:
pass
# Should've timed out on the iteration 'capacity'
if not i == capacity:
self.fail("Expected to timeout on iteration '{}' "
"but instead timed out on iteration '{}' "
"Staging Area size is '{}' and configured "
"capacity is '{}'.".format(capacity, i, sess.run(size),
capacity))
# Should have capacity elements in the staging area
self.assertTrue(sess.run(size) == capacity)
# Clear the staging area completely
for i in range(n):
self.assertTrue(sess.run(ret) == [i])
# It should now be empty
self.assertTrue(sess.run(size) == 0)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:60,代码来源:stage_op_test.py
示例8: testOrdering
def testOrdering(self):
import six
import random
with ops.Graph().as_default() as G:
with ops.device('/cpu:0'):
x = array_ops.placeholder(dtypes.int32, name='x')
pi = array_ops.placeholder(dtypes.int64, name='pi')
gi = array_ops.placeholder(dtypes.int64, name='gi')
with ops.device(test.gpu_device_name()):
stager = data_flow_ops.MapStagingArea([dtypes.int32, ],
shapes=[[]], ordered=True)
stage = stager.put(pi, [x], [0])
get = stager.get()
size = stager.size()
G.finalize()
n = 10
with self.test_session(use_gpu=True, graph=G) as sess:
# Keys n-1..0
keys = list(reversed(six.moves.range(n)))
for i in keys:
sess.run(stage, feed_dict={pi: i, x: i})
self.assertTrue(sess.run(size) == n)
# Check that key, values come out in ascending order
for i, k in enumerate(reversed(keys)):
get_key, values = sess.run(get)
self.assertTrue(i == k == get_key == values)
self.assertTrue(sess.run(size) == 0)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:35,代码来源:map_stage_op_test.py
示例9: testMemoryLimit
def testMemoryLimit(self):
memory_limit = 512*1024 # 512K
chunk = 200*1024 # 256K
capacity = memory_limit // chunk
with ops.device('/cpu:0'):
x = array_ops.placeholder(dtypes.uint8, name='x')
pi = array_ops.placeholder(dtypes.int64, name='pi')
gi = array_ops.placeholder(dtypes.int64, name='gi')
with ops.device(test.gpu_device_name()):
stager = data_flow_ops.MapStagingArea([dtypes.uint8],
memory_limit=memory_limit, shapes=[[]])
stage = stager.put(pi, [x], [0])
get = stager.get()
size = stager.size()
from six.moves import queue as Queue
import threading
import numpy as np
queue = Queue.Queue()
n = 5
missed = 0
with self.test_session(use_gpu=True) as sess:
# Stage data in a separate thread which will block
# when it hits the staging area's capacity and thus
# not fill the queue with n tokens
def thread_run():
for i in range(n):
sess.run(stage, feed_dict={x: np.full(chunk, i, dtype=np.uint8),
pi: i})
queue.put(0)
t = threading.Thread(target=thread_run)
t.start()
# Get tokens from the queue, making notes of when we timeout
for i in range(n):
try:
queue.get(timeout=0.05)
except Queue.Empty:
missed += 1
# We timed out n - capacity times waiting for queue puts
self.assertTrue(missed == n - capacity)
# Clear the staging area out a bit
for i in range(n - capacity):
sess.run(get)
# This should now succeed
t.join()
self.assertTrue(sess.run(size) == capacity)
# Clear out the staging area completely
for i in range(capacity):
sess.run(get)
开发者ID:astorfi,项目名称:tensorflow,代码行数:59,代码来源:map_stage_op_test.py
示例10: testCapacity
def testCapacity(self):
capacity = 3
with ops.Graph().as_default() as G:
with ops.device('/cpu:0'):
x = array_ops.placeholder(dtypes.int32, name='x')
pi = array_ops.placeholder(dtypes.int64, name='pi')
gi = array_ops.placeholder(dtypes.int64, name='gi')
with ops.device(test.gpu_device_name()):
stager = data_flow_ops.MapStagingArea([dtypes.int32, ],
capacity=capacity, shapes=[[]])
stage = stager.put(pi, [x], [0])
get = stager.get()
size = stager.size()
G.finalize()
from six.moves import queue as Queue
import threading
queue = Queue.Queue()
n = 5
missed = 0
with self.test_session(use_gpu=True, graph=G) as sess:
# Stage data in a separate thread which will block
# when it hits the staging area's capacity and thus
# not fill the queue with n tokens
def thread_run():
for i in range(n):
sess.run(stage, feed_dict={x: i, pi: i})
queue.put(0)
t = threading.Thread(target=thread_run)
t.start()
# Get tokens from the queue, making notes of when we timeout
for i in range(n):
try:
queue.get(timeout=0.05)
except Queue.Empty:
missed += 1
# We timed out n - capacity times waiting for queue puts
self.assertTrue(missed == n - capacity)
# Clear the staging area out a bit
for i in range(n - capacity):
sess.run(get)
# This should now succeed
t.join()
self.assertTrue(sess.run(size) == capacity)
# Clear out the staging area completely
for i in range(capacity):
sess.run(get)
开发者ID:ajaybhat,项目名称:tensorflow,代码行数:59,代码来源:map_stage_op_test.py
示例11: testPartialDictInsert
def testPartialDictInsert(self):
with ops.Graph().as_default() as G:
with ops.device('/cpu:0'):
x = array_ops.placeholder(dtypes.float32)
f = array_ops.placeholder(dtypes.float32)
v = array_ops.placeholder(dtypes.float32)
pi = array_ops.placeholder(dtypes.int64)
gi = array_ops.placeholder(dtypes.int64)
with ops.device(test.gpu_device_name()):
# Test barrier with dictionary
stager = data_flow_ops.MapStagingArea(
[dtypes.float32, dtypes.float32, dtypes.float32],
names=['x', 'v', 'f'])
stage_xf = stager.put(pi, {'x': x, 'f': f})
stage_v = stager.put(pi, {'v': v})
key, ret = stager.get(gi)
size = stager.size()
isize = stager.incomplete_size()
G.finalize()
with self.session(use_gpu=True, graph=G) as sess:
# 0 complete and incomplete entries
self.assertTrue(sess.run([size, isize]) == [0, 0])
# Stage key 0, x and f tuple entries
sess.run(stage_xf, feed_dict={pi: 0, x: 1, f: 2})
self.assertTrue(sess.run([size, isize]) == [0, 1])
# Stage key 1, x and f tuple entries
sess.run(stage_xf, feed_dict={pi: 1, x: 1, f: 2})
self.assertTrue(sess.run([size, isize]) == [0, 2])
# Now complete key 0 with tuple entry v
sess.run(stage_v, feed_dict={pi: 0, v: 1})
# 1 complete and 1 incomplete entry
self.assertTrue(sess.run([size, isize]) == [1, 1])
# We can now obtain tuple associated with key 0
self.assertTrue(
sess.run([key, ret], feed_dict={
gi: 0
}) == [0, {
'x': 1,
'f': 2,
'v': 1
}])
# 0 complete and 1 incomplete entry
self.assertTrue(sess.run([size, isize]) == [0, 1])
# Now complete key 1 with tuple entry v
sess.run(stage_v, feed_dict={pi: 1, v: 3})
# We can now obtain tuple associated with key 1
self.assertTrue(
sess.run([key, ret], feed_dict={
gi: 1
}) == [1, {
'x': 1,
'f': 2,
'v': 3
}])
开发者ID:abhinav-upadhyay,项目名称:tensorflow,代码行数:58,代码来源:map_stage_op_test.py
示例12: testGPU
def testGPU(self):
if not test.is_gpu_available(cuda_only=True):
return
gpu_dev = test.gpu_device_name()
ops.reset_default_graph()
with ops.device(gpu_dev):
tfprof_node, run_meta = _run_model()
self.assertEqual(tfprof_node.children[0].name, 'MatMul')
self.assertGreater(tfprof_node.children[0].exec_micros, 10)
ret = _extract_node(run_meta, 'MatMul')
self.assertEqual(len(ret['gpu:0']), 1)
self.assertEqual(len(ret['gpu:0/stream:all']), 1, '%s' % run_meta)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:14,代码来源:run_metadata_test.py
示例13: testColocation
def testColocation(self):
gpu_dev = test.gpu_device_name()
with ops.device('/cpu:0'):
x = array_ops.placeholder(dtypes.float32)
v = 2. * (array_ops.zeros([128, 128]) + x)
with ops.device(gpu_dev):
stager = data_flow_ops.StagingArea([dtypes.float32])
y = stager.put([v])
self.assertEqual(y.device, '/device:GPU:0' if gpu_dev
else gpu_dev)
with ops.device('/cpu:0'):
x = stager.get()
self.assertEqual(x.device, '/device:CPU:0')
开发者ID:astorfi,项目名称:tensorflow,代码行数:14,代码来源:stage_op_test.py
示例14: testSimple
def testSimple(self):
with self.test_session(use_gpu=True) as sess:
with ops.device('/cpu:0'):
x = array_ops.placeholder(dtypes.float32)
v = 2. * (array_ops.zeros([128, 128]) + x)
with ops.device(test.gpu_device_name()):
stager = data_flow_ops.StagingArea([dtypes.float32])
stage = stager.put([v])
y = stager.get()
y = math_ops.reduce_max(math_ops.matmul(y, y))
sess.run(stage, feed_dict={x: -1})
for i in range(10):
_, yval = sess.run([stage, y], feed_dict={x: i})
self.assertAllClose(4 * (i - 1) * (i - 1) * 128, yval, rtol=1e-4)
开发者ID:lukeiwanski,项目名称:tensorflow-opencl,代码行数:14,代码来源:stage_op_test.py
示例15: testPeek
def testPeek(self):
with ops.device('/cpu:0'):
x = array_ops.placeholder(dtypes.int32, name='x')
p = array_ops.placeholder(dtypes.int32, name='p')
with ops.device(test.gpu_device_name()):
stager = data_flow_ops.StagingArea([dtypes.int32, ], shapes=[[]])
stage = stager.put([x])
peek = stager.peek(p)
ret = stager.get()
with self.test_session(use_gpu=True) as sess:
for i in range(10):
sess.run(stage, feed_dict={x:i})
for i in range(10):
self.assertTrue(sess.run(peek, feed_dict={p:i}) == i)
开发者ID:astorfi,项目名称:tensorflow,代码行数:16,代码来源:stage_op_test.py
示例16: testMultiDevices
def testMultiDevices(self):
with self.test_session() as sess:
with ops.device(test.gpu_device_name()):
a = constant_op.constant(1.0)
a_handle = sess.run(session_ops.get_session_handle(a))
with ops.device("/cpu:0"):
b = constant_op.constant(2.0)
b_handle = sess.run(session_ops.get_session_handle(b))
a_p, a_t = session_ops.get_session_tensor(a_handle.handle, dtypes.float32)
b_p, b_t = session_ops.get_session_tensor(b_handle.handle, dtypes.float32)
c = math_ops.add(a_t, b_t)
c_handle = sess.run(
session_ops.get_session_handle(c),
feed_dict={a_p: a_handle.handle,
b_p: b_handle.handle})
self.assertEqual(3.0, c_handle.eval())
开发者ID:Immexxx,项目名称:tensorflow,代码行数:17,代码来源:session_ops_test.py
示例17: testColocation
def testColocation(self):
gpu_dev = test.gpu_device_name()
with ops.Graph().as_default() as G:
with ops.device('/cpu:0'):
x = array_ops.placeholder(dtypes.float32)
v = 2. * (array_ops.zeros([128, 128]) + x)
with ops.device(gpu_dev):
stager = data_flow_ops.StagingArea([dtypes.float32])
y = stager.put([v])
expected_name = gpu_dev if 'gpu' not in gpu_dev else '/device:GPU:0'
self.assertEqual(y.device, expected_name)
with ops.device('/cpu:0'):
x = stager.get()[0]
self.assertEqual(x.device, '/device:CPU:0')
G.finalize()
开发者ID:1000sprites,项目名称:tensorflow,代码行数:17,代码来源:stage_op_test.py
示例18: testMultiple
def testMultiple(self):
with self.test_session(use_gpu=True) as sess:
with ops.device('/cpu:0'):
x = array_ops.placeholder(dtypes.float32)
pi = array_ops.placeholder(dtypes.int64)
gi = array_ops.placeholder(dtypes.int64)
v = 2. * (array_ops.zeros([128, 128]) + x)
with ops.device(test.gpu_device_name()):
stager = data_flow_ops.MapStagingArea([dtypes.float32, dtypes.float32])
stage = stager.put(pi, [x, v], [0, 1])
k, (z, y) = stager.get(gi)
y = math_ops.reduce_max(z * math_ops.matmul(y, y))
sess.run(stage, feed_dict={x: -1, pi: 0})
for i in range(10):
_, yval = sess.run([stage, y], feed_dict={x: i, pi: i+1, gi:i})
self.assertAllClose(
4 * (i - 1) * (i - 1) * (i - 1) * 128, yval, rtol=1e-4)
开发者ID:astorfi,项目名称:tensorflow,代码行数:17,代码来源:map_stage_op_test.py
示例19: testMultiple
def testMultiple(self):
with ops.Graph().as_default() as G:
with ops.device('/cpu:0'):
x = array_ops.placeholder(dtypes.float32)
v = 2. * (array_ops.zeros([128, 128]) + x)
with ops.device(test.gpu_device_name()):
stager = data_flow_ops.StagingArea([dtypes.float32, dtypes.float32])
stage = stager.put([x, v])
z, y = stager.get()
y = math_ops.reduce_max(z * math_ops.matmul(y, y))
G.finalize()
with self.session(use_gpu=True, graph=G) as sess:
sess.run(stage, feed_dict={x: -1})
for i in range(10):
_, yval = sess.run([stage, y], feed_dict={x: i})
self.assertAllClose(
4 * (i - 1) * (i - 1) * (i - 1) * 128, yval, rtol=1e-4)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:19,代码来源:stage_op_test.py
示例20: testHandleMover
def testHandleMover(self):
with self.test_session() as sess:
# Return a handle.
a = constant_op.constant(10)
b = constant_op.constant(5)
c = math_ops.multiply(a, b)
h = session_ops.get_session_handle(c)
h = sess.run(h)
# Feed a tensor handle.
f, x = session_ops.get_session_tensor(h.handle, dtypes.int32)
y = math_ops.multiply(x, 10)
self.assertEqual(500, sess.run(y, feed_dict={f: h.handle}))
# Feed another tensor handle.
with ops.device(test.gpu_device_name()):
a = constant_op.constant(10)
h = session_ops.get_session_handle(a)
h = sess.run(h)
self.assertEqual(100, sess.run(y, feed_dict={f: h.handle}))
开发者ID:Immexxx,项目名称:tensorflow,代码行数:20,代码来源:session_ops_test.py
注:本文中的tensorflow.python.platform.test.gpu_device_name函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论