• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python test.get_temp_dir函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.platform.test.get_temp_dir函数的典型用法代码示例。如果您正苦于以下问题:Python get_temp_dir函数的具体用法?Python get_temp_dir怎么用?Python get_temp_dir使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了get_temp_dir函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: testBasics

  def testBasics(self):
    ops.reset_default_graph()
    outfile = os.path.join(test.get_temp_dir(), "dump")
    opts = builder(builder.time_and_memory()
                  ).with_file_output(outfile).build()

    x = lib.BuildFullModel()

    profile_str = None
    profile_step100 = os.path.join(test.get_temp_dir(), "profile_100")
    with profile_context.ProfileContext(test.get_temp_dir()) as pctx:
      pctx.add_auto_profiling("op", options=opts, profile_steps=[15, 50, 100])
      with session.Session() as sess:
        self.evaluate(variables.global_variables_initializer())
        total_steps = 101
        for i in range(total_steps):
          self.evaluate(x)
          if i == 14 or i == 49:
            self.assertTrue(gfile.Exists(outfile))
            gfile.Remove(outfile)
          if i == 99:
            self.assertTrue(gfile.Exists(profile_step100))
            with gfile.Open(outfile, "r") as f:
              profile_str = f.read()
            gfile.Remove(outfile)

      self.assertEqual(set([15, 50, 100]), set(pctx.get_profiles("op").keys()))

    with lib.ProfilerFromFile(
        os.path.join(test.get_temp_dir(), "profile_100")) as profiler:
      profiler.profile_operations(options=opts)
      with gfile.Open(outfile, "r") as f:
        self.assertEqual(profile_str, f.read())
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:33,代码来源:profile_context_test.py


示例2: testComplexCodeView

  def testComplexCodeView(self):
    ops.reset_default_graph()
    outfile = os.path.join(test.get_temp_dir(), 'dump')
    opts = (builder(builder.trainable_variables_parameter())
            .with_file_output(outfile)
            .with_accounted_types(['.*'])
            .with_node_names(show_name_regexes=
                             ['.*model_analyzer_testlib.py.*'])
            .account_displayed_op_only(False)
            .select(['params', 'float_ops']).build())

    with profile_context.ProfileContext(test.get_temp_dir(),
                                        trace_steps=[],
                                        dump_steps=[]) as pctx:
      with session.Session() as sess:
        x = lib.BuildFullModel()

        sess.run(variables.global_variables_initializer())
        pctx.trace_next_step()
        _ = sess.run(x)
        tfprof_node = pctx.profiler.profile_python(options=opts)

        # pylint: disable=line-too-long
        with gfile.Open(outfile, 'r') as f:
          lines = f.read().split('\n')
          result = '\n'.join([l[:min(len(l), 80)] for l in lines])
          self.assertEqual(
              compat.as_bytes(
                  'node name | # parameters | # float_ops\n_TFProfRoot (--/2.84k params, --/168.86k flops)\n  model_analyzer_testlib.py:63:BuildFullModel (0/1.80k params, 0/45.37k flops)\n    model_analyzer_testlib.py:40:BuildSmallModel (0/0 params, 0/0 flops)\n    model_analyzer_testlib.py:44:BuildSmallModel (0/4 params, 0/8 flops)\n    model_analyzer_testlib.py:48:BuildSmallModel (0/648 params, 0/1.30k flops)\n    model_analyzer_testlib.py:49:BuildSmallModel (0/0 params, 0/23.33k flops)\n    model_analyzer_testlib.py:53:BuildSmallModel (0/1.15k params, 0/2.30k flops)\n    model_analyzer_testlib.py:54:BuildSmallModel (0/0 params, 0/18.43k flops)\n  model_analyzer_testlib.py:63:BuildFullModel (gradient) (0/0 params, 0/67.39k f\n    model_analyzer_testlib.py:49:BuildSmallModel (gradient) (0/0 params, 0/46.66\n    model_analyzer_testlib.py:54:BuildSmallModel (gradient) (0/0 params, 0/20.74\n  model_analyzer_testlib.py:67:BuildFullModel (0/1.04k params, 0/18.58k flops)\n  model_analyzer_testlib.py:67:BuildFullModel (gradient) (0/0 params, 0/37.00k f\n  model_analyzer_testlib.py:69:BuildFullModel (0/0 params, 0/0 flops)\n  model_analyzer_testlib.py:70:BuildFullModel (0/0 params, 0/258 flops)\n  model_analyzer_testlib.py:70:BuildFullModel (gradient) (0/0 params, 0/129 flop\n  model_analyzer_testlib.py:72:BuildFullModel (0/0 params, 0/141 flops)\n'
              ), compat.as_bytes(lib.CheckAndRemoveDoc(result)))

        self.assertLess(0, tfprof_node.total_exec_micros)
        self.assertEqual(2844, tfprof_node.total_parameters)
        self.assertEqual(168863, tfprof_node.total_float_ops)
        self.assertEqual(8, len(tfprof_node.children))
        self.assertEqual('_TFProfRoot', tfprof_node.name)
        self.assertEqual(
            'model_analyzer_testlib.py:63:BuildFullModel',
            tfprof_node.children[0].name)
        self.assertEqual(
            'model_analyzer_testlib.py:63:BuildFullModel (gradient)',
            tfprof_node.children[1].name)
        self.assertEqual(
            'model_analyzer_testlib.py:67:BuildFullModel',
            tfprof_node.children[2].name)
        self.assertEqual(
            'model_analyzer_testlib.py:67:BuildFullModel (gradient)',
            tfprof_node.children[3].name)
        self.assertEqual(
            'model_analyzer_testlib.py:69:BuildFullModel',
            tfprof_node.children[4].name)
        self.assertEqual(
            'model_analyzer_testlib.py:70:BuildFullModel',
            tfprof_node.children[5].name)
        self.assertEqual(
            'model_analyzer_testlib.py:70:BuildFullModel (gradient)',
            tfprof_node.children[6].name)
        self.assertEqual(
            'model_analyzer_testlib.py:72:BuildFullModel',
            tfprof_node.children[7].name)
开发者ID:andrewharp,项目名称:tensorflow,代码行数:60,代码来源:model_analyzer_test.py


示例3: testComplexCodeView

  def testComplexCodeView(self):
    ops.reset_default_graph()
    outfile = os.path.join(test.get_temp_dir(), 'dump')
    opts = (builder(builder.trainable_variables_parameter())
            .with_file_output(outfile)
            .with_accounted_types(['.*'])
            .with_node_names(show_name_regexes=
                             ['.*model_analyzer_testlib.py.*'])
            .account_displayed_op_only(False)
            .select(['params', 'float_ops']).build())

    with profile_context.ProfileContext(test.get_temp_dir(),
                                        trace_steps=[],
                                        dump_steps=[]) as pctx:
      with session.Session() as sess:
        x = lib.BuildFullModel()

        sess.run(variables.global_variables_initializer())
        pctx.trace_next_step()
        _ = sess.run(x)
        tfprof_node = pctx.profiler.profile_python(options=opts)

        # pylint: disable=line-too-long
        with gfile.Open(outfile, 'r') as f:
          lines = f.read().split('\n')
          self.assertGreater(len(lines), 5)
          result = '\n'.join([l[:min(len(l), 80)] for l in lines])
          self.assertTrue(
              compat.as_text(lib.CheckAndRemoveDoc(result))
              .startswith('node name | # parameters | # float_ops'))

        self.assertLess(0, tfprof_node.total_exec_micros)
        self.assertEqual(2844, tfprof_node.total_parameters)
        self.assertLess(145660, tfprof_node.total_float_ops)
        self.assertEqual(8, len(tfprof_node.children))
        self.assertEqual('_TFProfRoot', tfprof_node.name)
        self.assertEqual(
            'model_analyzer_testlib.py:63:BuildFullModel',
            tfprof_node.children[0].name)
        self.assertEqual(
            'model_analyzer_testlib.py:63:BuildFullModel (gradient)',
            tfprof_node.children[1].name)
        self.assertEqual(
            'model_analyzer_testlib.py:67:BuildFullModel',
            tfprof_node.children[2].name)
        self.assertEqual(
            'model_analyzer_testlib.py:67:BuildFullModel (gradient)',
            tfprof_node.children[3].name)
        self.assertEqual(
            'model_analyzer_testlib.py:69:BuildFullModel',
            tfprof_node.children[4].name)
        self.assertEqual(
            'model_analyzer_testlib.py:70:BuildFullModel',
            tfprof_node.children[5].name)
        self.assertEqual(
            'model_analyzer_testlib.py:70:BuildFullModel (gradient)',
            tfprof_node.children[6].name)
        self.assertEqual(
            'model_analyzer_testlib.py:72:BuildFullModel',
            tfprof_node.children[7].name)
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:60,代码来源:model_analyzer_test.py


示例4: testAutoProfiling

  def testAutoProfiling(self):
    ops.reset_default_graph()
    time_dir = os.path.join(test.get_temp_dir(), 'time')
    memory_dir = os.path.join(test.get_temp_dir(), 'memory')
    profile_dir = os.path.join(test.get_temp_dir(), 'dir/dir2/profile')
    # TODO(xpan): Should we create parent directory for them?
    gfile.MkDir(time_dir)
    gfile.MkDir(memory_dir)

    time_opts = (builder(builder.time_and_memory())
                 .with_file_output(os.path.join(time_dir, 'profile'))
                 .select(['micros']).build())
    memory_opts = (builder(builder.time_and_memory())
                   .with_file_output(os.path.join(memory_dir, 'profile'))
                   .select(['bytes']).build())

    time_steps = [2, 3]
    memory_steps = [1, 3]
    dump_steps = [3, 4]

    x = lib.BuildSmallModel()
    with profile_context.ProfileContext(profile_dir,
                                        trace_steps=[1, 2, 3],
                                        dump_steps=[3, 4]) as pctx:
      pctx.add_auto_profiling('scope', time_opts, time_steps)
      pctx.add_auto_profiling('scope', memory_opts, memory_steps)

      self._trainLoop(x, 10, time_dir, time_steps,
                      memory_dir, memory_steps, profile_dir, dump_steps)
开发者ID:andrewharp,项目名称:tensorflow,代码行数:29,代码来源:model_analyzer_test.py


示例5: testRunCommandWithDebuggerEnabled

  def testRunCommandWithDebuggerEnabled(self):
    self.parser = saved_model_cli.create_parser()
    base_path = test.test_src_dir_path(SAVED_MODEL_PATH)
    x = np.array([[1], [2]])
    x_notused = np.zeros((6, 3))
    input_path = os.path.join(test.get_temp_dir(),
                              'testRunCommandNewOutdir_inputs.npz')
    output_dir = os.path.join(test.get_temp_dir(), 'new_dir')
    if os.path.isdir(output_dir):
      shutil.rmtree(output_dir)
    np.savez(input_path, x0=x, x1=x_notused)
    args = self.parser.parse_args([
        'run', '--dir', base_path, '--tag_set', 'serve', '--signature_def',
        'serving_default', '--inputs', 'x=' + input_path + '[x0]', '--outdir',
        output_dir, '--tf_debug'
    ])

    def fake_wrapper_session(sess):
      return sess

    with test.mock.patch.object(local_cli_wrapper,
                                'LocalCLIDebugWrapperSession',
                                side_effect=fake_wrapper_session,
                                autospec=True) as fake:
      saved_model_cli.run(args)
      fake.assert_called_with(test.mock.ANY)

    y_actual = np.load(os.path.join(output_dir, 'y.npy'))
    y_expected = np.array([[2.5], [3.0]])
    self.assertAllClose(y_expected, y_actual)
开发者ID:DILASSS,项目名称:tensorflow,代码行数:30,代码来源:saved_model_cli_test.py


示例6: testAssets

  def testAssets(self):
    export_dir = os.path.join(test.get_temp_dir(), "test_assets")
    builder = saved_model_builder.SavedModelBuilder(export_dir)

    with self.test_session(graph=ops.Graph()) as sess:
      self._init_and_validate_variable(sess, "v", 42)

      # Build an asset collection.
      ignored_filepath = os.path.join(
          compat.as_bytes(test.get_temp_dir()), compat.as_bytes("ignored.txt"))
      file_io.write_string_to_file(ignored_filepath, "will be ignored")

      asset_collection = self._build_asset_collection("hello42.txt",
                                                      "foo bar baz",
                                                      "asset_file_tensor")

      builder.add_meta_graph_and_variables(
          sess, ["foo"], assets_collection=asset_collection)

    # Save the SavedModel to disk.
    builder.save()

    with self.test_session(graph=ops.Graph()) as sess:
      foo_graph = loader.load(sess, ["foo"], export_dir)
      self._validate_asset_collection(export_dir, foo_graph.collection_def,
                                      "hello42.txt", "foo bar baz",
                                      "asset_file_tensor:0")
      ignored_asset_path = os.path.join(
          compat.as_bytes(export_dir),
          compat.as_bytes(constants.ASSETS_DIRECTORY),
          compat.as_bytes("ignored.txt"))
      self.assertFalse(file_io.file_exists(ignored_asset_path))
开发者ID:adityaatluri,项目名称:tensorflow,代码行数:32,代码来源:saved_model_test.py


示例7: testInputParserQuoteAndWhitespace

 def testInputParserQuoteAndWhitespace(self):
   x0 = np.array([[1], [2]])
   x1 = np.array(range(6)).reshape(2, 3)
   input0_path = os.path.join(test.get_temp_dir(), 'input0.npy')
   input1_path = os.path.join(test.get_temp_dir(), 'input1.npy')
   np.save(input0_path, x0)
   np.save(input1_path, x1)
   input_str = '"x0=' + input0_path + '[x0] , x1 = ' + input1_path + '"'
   feed_dict = saved_model_cli.load_inputs_from_input_arg_string(input_str)
   self.assertTrue(np.all(feed_dict['x0'] == x0))
   self.assertTrue(np.all(feed_dict['x1'] == x1))
开发者ID:finardi,项目名称:tensorflow,代码行数:11,代码来源:saved_model_cli_test.py


示例8: main

def main(unused_args):
  name = FLAGS.name
  test_name = FLAGS.test_name
  test_args = FLAGS.test_args
  benchmark_type = FLAGS.benchmark_type
  test_results, _ = run_and_gather_logs_lib.run_and_gather_logs(
      name, test_name=test_name, test_args=test_args,
      benchmark_type=benchmark_type)

  # Additional bits we receive from bazel
  test_results.build_configuration.CopyFrom(gather_build_configuration())

  if not FLAGS.test_log_output_dir:
    print(text_format.MessageToString(test_results))
    return

  if FLAGS.test_log_output_filename:
    file_name = FLAGS.test_log_output_filename
  else:
    file_name = (name.strip("/").translate(maketrans("/:", "__")) +
                 time.strftime("%Y%m%d%H%M%S", time.gmtime()))
  if FLAGS.test_log_output_use_tmpdir:
    tmpdir = test.get_temp_dir()
    output_path = os.path.join(tmpdir, FLAGS.test_log_output_dir, file_name)
  else:
    output_path = os.path.join(
        os.path.abspath(FLAGS.test_log_output_dir), file_name)
  json_test_results = json_format.MessageToJson(test_results)
  gfile.GFile(output_path + ".json", "w").write(json_test_results)
  tf_logging.info("Test results written to: %s" % output_path)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:30,代码来源:run_and_gather_logs.py


示例9: testSelectEverything

  def testSelectEverything(self):
    ops.reset_default_graph()
    outfile = os.path.join(test.get_temp_dir(), 'dump')
    opts = (builder(builder.trainable_variables_parameter())
            .with_file_output(outfile)
            .with_accounted_types(['.*'])
            .select(['params', 'float_ops', 'occurrence', 'device', 'op_types',
                     'input_shapes']).build())

    rewriter_config = rewriter_config_pb2.RewriterConfig(
        disable_model_pruning=True)
    graph_options = config_pb2.GraphOptions(rewrite_options=rewriter_config)
    config = config_pb2.ConfigProto(graph_options=graph_options)
    with session.Session(config=config) as sess, ops.device('/device:CPU:0'):
      x = lib.BuildSmallModel()

      sess.run(variables.global_variables_initializer())
      run_meta = config_pb2.RunMetadata()
      _ = sess.run(x,
                   options=config_pb2.RunOptions(
                       trace_level=config_pb2.RunOptions.FULL_TRACE),
                   run_metadata=run_meta)

      model_analyzer.profile(
          sess.graph, run_meta, options=opts)
开发者ID:andrewharp,项目名称:tensorflow,代码行数:25,代码来源:model_analyzer_test.py


示例10: setUp

  def setUp(self):
    ops.reset_default_graph()
    dim = 1
    num = 3
    with ops.name_scope('some_scope'):
      # Basically from 0 to dim*num-1.
      flat_data = math_ops.linspace(0.0, dim * num - 1, dim * num)
      bias = variables.Variable(
          array_ops.reshape(flat_data, (num, dim)), name='bias')
    save = saver.Saver([bias])
    with self.test_session() as sess:
      variables.global_variables_initializer().run()
      self.bundle_file = os.path.join(test.get_temp_dir(), 'bias_checkpoint')
      save.save(sess, self.bundle_file)

    self.new_class_vocab_file = os.path.join(
        test.test_src_dir_path(_TESTDATA_PATH), 'keyword_new.txt')
    self.old_class_vocab_file = os.path.join(
        test.test_src_dir_path(_TESTDATA_PATH), 'keyword.txt')
    self.init_val = 42

    def _init_val_initializer(shape, dtype=None, partition_info=None):
      del dtype, partition_info  # Unused by this unit-testing initializer.
      return array_ops.tile(
          constant_op.constant([[self.init_val]], dtype=dtypes.float32), shape)

    self.initializer = _init_val_initializer
开发者ID:1000sprites,项目名称:tensorflow,代码行数:27,代码来源:checkpoint_ops_test.py


示例11: test_evaluate_multiple_times

  def test_evaluate_multiple_times(self):
    training_max_step = 200

    mock_est = test.mock.Mock(spec=estimator_lib.Estimator)
    mock_est.model_dir = compat.as_bytes(test.get_temp_dir())
    mock_est.evaluate.side_effect = [
        {_GLOBAL_STEP_KEY: training_max_step // 2},
        {_GLOBAL_STEP_KEY: training_max_step}
    ]
    mock_est.latest_checkpoint.side_effect = ['path_1', 'path_2']

    mock_train_spec = test.mock.Mock(spec=training.TrainSpec)
    mock_train_spec.max_steps = training_max_step

    exporter = test.mock.PropertyMock(spec=exporter_lib.Exporter)
    exporter.name = 'see_how_many_times_export_is_called'

    eval_spec = training.EvalSpec(
        input_fn=lambda: 1,
        start_delay_secs=0,
        throttle_secs=0,
        exporters=exporter)

    executor = training._TrainingExecutor(mock_est, mock_train_spec, eval_spec)
    executor.run_evaluator()

    self.assertEqual(2, mock_est.evaluate.call_count)
    self.assertEqual(2, exporter.export.call_count)
开发者ID:Mazecreator,项目名称:tensorflow,代码行数:28,代码来源:training_test.py


示例12: _GetBaseApiMap

  def _GetBaseApiMap(self):
    """Get a map from graph op name to its base ApiDef.

    Returns:
      Dictionary mapping graph op name to corresponding ApiDef.
    """
    # Convert base ApiDef in Multiline format to Proto format.
    converted_base_api_dir = os.path.join(
        test.get_temp_dir(), 'temp_base_api_defs')
    subprocess.check_call(
        [os.path.join(resource_loader.get_root_dir_with_all_resources(),
                      _CONVERT_FROM_MULTILINE_SCRIPT),
         _BASE_API_DIR, converted_base_api_dir])

    name_to_base_api_def = {}
    base_api_files = file_io.get_matching_files(
        os.path.join(converted_base_api_dir, 'api_def_*.pbtxt'))
    for base_api_file in base_api_files:
      if file_io.file_exists(base_api_file):
        api_defs = api_def_pb2.ApiDefs()
        text_format.Merge(
            file_io.read_file_to_string(base_api_file), api_defs)
        for api_def in api_defs.op:
          name_to_base_api_def[api_def.graph_op_name] = api_def
    return name_to_base_api_def
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:25,代码来源:api_compatibility_test.py


示例13: testComplexCodeView

  def testComplexCodeView(self):
    ops.reset_default_graph()
    outfile = os.path.join(test.get_temp_dir(), 'dump')
    opts = (builder(builder.trainable_variables_parameter())
            .with_file_output(outfile)
            .with_accounted_types(['.*'])
            .with_node_names(show_name_regexes=
                             ['.*model_analyzer_testlib.py.*'])
            .account_displayed_op_only(False)
            .select(['params', 'float_ops']).build())

    with session.Session() as sess:
      x = lib.BuildFullModel()

      sess.run(variables.global_variables_initializer())
      run_meta = config_pb2.RunMetadata()
      _ = sess.run(x,
                   options=config_pb2.RunOptions(
                       trace_level=config_pb2.RunOptions.FULL_TRACE),
                   run_metadata=run_meta)

      tfprof_node = model_analyzer.profile(
          sess.graph, run_meta, cmd='code', options=opts)

      # pylint: disable=line-too-long
      with gfile.Open(outfile, 'r') as f:
        lines = f.read().split('\n')
        result = '\n'.join([l[:min(len(l), 80)] for l in lines])
        self.assertEqual('node name | # parameters | # float_ops\n_TFProfRoot (--/2.84k params, --/91.04k flops)\n  model_analyzer_testlib.py:58:BuildFullModel:seq.append(array_... (0/1.80k para\n    model_analyzer_testlib.py:35:BuildSmallModel:image = array_ops... (0/0 param\n    model_analyzer_testlib.py:39:BuildSmallModel:initializer=init_... (0/4 param\n    model_analyzer_testlib.py:43:BuildSmallModel:initializer=init_... (0/648 par\n    model_analyzer_testlib.py:44:BuildSmallModel:x = nn_ops.conv2d... (0/0 param\n    model_analyzer_testlib.py:48:BuildSmallModel:initializer=init_... (0/1.15k p\n    model_analyzer_testlib.py:49:BuildSmallModel:x = nn_ops.conv2d... (0/0 param\n  model_analyzer_testlib.py:58:BuildFullModel:seq.append(array_... (gradient) (0\n    model_analyzer_testlib.py:44:BuildSmallModel:x = nn_ops.conv2d... (gradient)\n    model_analyzer_testlib.py:49:BuildSmallModel:x = nn_ops.conv2d... (gradient)\n  model_analyzer_testlib.py:62:BuildFullModel:cell, array_ops.c... (0/1.04k para\n  model_analyzer_testlib.py:62:BuildFullModel:cell, array_ops.c... (gradient) (0\n  model_analyzer_testlib.py:64:BuildFullModel:target = array_op... (0/0 params, \n  model_analyzer_testlib.py:65:BuildFullModel:loss = nn_ops.l2_... (0/0 params, \n  model_analyzer_testlib.py:65:BuildFullModel:loss = nn_ops.l2_... (gradient) (0\n  model_analyzer_testlib.py:67:BuildFullModel:return sgd_op.min... (0/0 params, \n',
                         result)

      self.assertLess(0, tfprof_node.total_exec_micros)
      self.assertEqual(2844, tfprof_node.total_parameters)
      self.assertEqual(91040, tfprof_node.total_float_ops)
      self.assertEqual(8, len(tfprof_node.children))
      self.assertEqual('_TFProfRoot', tfprof_node.name)
      self.assertEqual(
          'model_analyzer_testlib.py:58:BuildFullModel:seq.append(array_...',
          tfprof_node.children[0].name)
      self.assertEqual(
          'model_analyzer_testlib.py:58:BuildFullModel:seq.append(array_... (gradient)',
          tfprof_node.children[1].name)
      self.assertEqual(
          'model_analyzer_testlib.py:62:BuildFullModel:cell, array_ops.c...',
          tfprof_node.children[2].name)
      self.assertEqual(
          'model_analyzer_testlib.py:62:BuildFullModel:cell, array_ops.c... (gradient)',
          tfprof_node.children[3].name)
      self.assertEqual(
          'model_analyzer_testlib.py:64:BuildFullModel:target = array_op...',
          tfprof_node.children[4].name)
      self.assertEqual(
          'model_analyzer_testlib.py:65:BuildFullModel:loss = nn_ops.l2_...',
          tfprof_node.children[5].name)
      self.assertEqual(
          'model_analyzer_testlib.py:65:BuildFullModel:loss = nn_ops.l2_... (gradient)',
          tfprof_node.children[6].name)
      self.assertEqual(
          'model_analyzer_testlib.py:67:BuildFullModel:return sgd_op.min...',
          tfprof_node.children[7].name)
开发者ID:chdinh,项目名称:tensorflow,代码行数:60,代码来源:model_analyzer_test.py


示例14: testSimpleCodeView

  def testSimpleCodeView(self):
    ops.reset_default_graph()
    opts = model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS.copy()
    outfile = os.path.join(test.get_temp_dir(), 'dump')
    opts['output'] = 'file:outfile=' + outfile
    opts['account_type_regexes'] = ['.*']
    opts['show_name_regexes'] = ['.*model_analyzer_testlib.*']
    opts['account_displayed_op_only'] = False
    # TODO(xpan): Test 'micros'. Since the execution time changes each run,
    # it's a bit difficult to test it now.
    opts['select'] = [
        'bytes', 'params', 'float_ops', 'num_hidden_ops', 'device',
        'input_shapes'
    ]

    with session.Session() as sess:
      x = lib.BuildSmallModel()

      sess.run(variables.global_variables_initializer())
      run_meta = config_pb2.RunMetadata()
      _ = sess.run(x,
                   options=config_pb2.RunOptions(
                       trace_level=config_pb2.RunOptions.FULL_TRACE),
                   run_metadata=run_meta)

      model_analyzer.print_model_analysis(
          sess.graph, run_meta, tfprof_cmd='code', tfprof_options=opts)

      with gfile.Open(outfile, 'r') as f:
        # pylint: disable=line-too-long
        self.assertEqual(
            'node name | output bytes | # parameters | # float_ops | assigned devices | input',
            f.read()[0:80])
开发者ID:Joetz,项目名称:tensorflow,代码行数:33,代码来源:model_analyzer_test.py


示例15: testTimeline

  def testTimeline(self):
    ops.reset_default_graph()
    outfile = os.path.join(test.get_temp_dir(), 'timeline')
    opts = (builder(builder.trainable_variables_parameter())
            .with_max_depth(100000)
            .with_step(0)
            .with_timeline_output(outfile)
            .with_accounted_types(['.*']).build())

    with session.Session() as sess:
      x = lib.BuildFullModel()

      sess.run(variables.global_variables_initializer())
      run_meta = config_pb2.RunMetadata()
      _ = sess.run(
          x,
          options=config_pb2.RunOptions(
              trace_level=config_pb2.RunOptions.FULL_TRACE),
          run_metadata=run_meta)

      _ = model_analyzer.profile(
          sess.graph, run_meta, cmd='graph', options=opts)

      with gfile.Open(outfile, 'r') as f:
        # Test that a json file is created.
        # TODO(xpan): tfprof Timeline isn't quite correct on Windows.
        # Investigate why.
        if os.name != 'nt':
          self.assertLess(1000, len(f.read()))
        else:
          self.assertLess(1, len(f.read()))
开发者ID:rmcguinness,项目名称:tensorflow,代码行数:31,代码来源:model_analyzer_test.py


示例16: testSaveAsText

  def testSaveAsText(self):
    export_dir = os.path.join(test.get_temp_dir(), "test_astext")
    builder = saved_model_builder.SavedModelBuilder(export_dir)

    # Graph with a single variable. SavedModel invoked to:
    # - add with weights.
    with self.test_session(graph=ops.Graph()) as sess:
      self._init_and_validate_variable(sess, "v", 42)
      builder.add_meta_graph_and_variables(sess, ["foo"])

    # Graph with the same single variable. SavedModel invoked to:
    # - simply add the model (weights are not updated).
    with self.test_session(graph=ops.Graph()) as sess:
      self._init_and_validate_variable(sess, "v", 43)
      builder.add_meta_graph(["bar"])

    # Save the SavedModel to disk in text format.
    builder.save(as_text=True)

    # Restore the graph with tag "foo", whose variables were saved.
    with self.test_session(graph=ops.Graph()) as sess:
      loader.load(sess, ["foo"], export_dir)
      self.assertEqual(
          42, ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0].eval())

    # Restore the graph with tag "bar", whose variables were not saved.
    with self.test_session(graph=ops.Graph()) as sess:
      loader.load(sess, ["bar"], export_dir)
      self.assertEqual(
          42, ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0].eval())
开发者ID:adityaatluri,项目名称:tensorflow,代码行数:30,代码来源:saved_model_test.py


示例17: testTimeline

  def testTimeline(self):
    ops.reset_default_graph()
    opts = model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS.copy()
    outfile = os.path.join(test.get_temp_dir(), 'timeline')
    opts['output'] = 'timeline:outfile=' + outfile
    opts['account_type_regexes'] = ['.*']
    opts['max_depth'] = 100000
    opts['step'] = 0

    with session.Session() as sess:
      x = lib.BuildFullModel()

      sess.run(variables.global_variables_initializer())
      run_meta = config_pb2.RunMetadata()
      _ = sess.run(
          x,
          options=config_pb2.RunOptions(
              trace_level=config_pb2.RunOptions.FULL_TRACE),
          run_metadata=run_meta)

      _ = model_analyzer.print_model_analysis(
          sess.graph, run_meta, tfprof_cmd='graph', tfprof_options=opts)

      with gfile.Open(outfile, 'r') as f:
        # Test that a json file is created.
        # TODO(xpan): tfprof Timeline isn't quite correct on Windows.
        # Investigate why.
        if os.name != 'nt':
          self.assertLess(1000, len(f.read()))
        else:
          self.assertLess(1, len(f.read()))
开发者ID:Joetz,项目名称:tensorflow,代码行数:31,代码来源:model_analyzer_test.py


示例18: testGraphWithoutVariables

  def testGraphWithoutVariables(self):
    export_dir = os.path.join(test.get_temp_dir(), "test_graph_has_variables")
    builder = saved_model_builder.SavedModelBuilder(export_dir)

    # Graph with no variables.
    with self.test_session(graph=ops.Graph()) as sess:
      constant_5_name = constant_op.constant(5.0).name
      builder.add_meta_graph_and_variables(sess, ["foo"])

    # Second graph with no variables
    with self.test_session(graph=ops.Graph()) as sess:
      constant_6_name = constant_op.constant(6.0).name
      builder.add_meta_graph(["bar"])

    # Save the SavedModel to disk.
    builder.save()

    # Restore the graph with tag "foo".
    with self.test_session(graph=ops.Graph()) as sess:
      loader.load(sess, ["foo"], export_dir)
      # Read the constant a from the graph.
      a = ops.get_default_graph().get_tensor_by_name(constant_5_name)
      b = constant_op.constant(6.0)
      c = a * b
      self.assertEqual(30.0, sess.run(c))

    # Restore the graph with tag "bar".
    with self.test_session(graph=ops.Graph()) as sess:
      loader.load(sess, ["bar"], export_dir)
      # Read the constant a from the graph.
      a = ops.get_default_graph().get_tensor_by_name(constant_6_name)
      b = constant_op.constant(5.0)
      c = a * b
      self.assertEqual(30.0, sess.run(c))
开发者ID:adityaatluri,项目名称:tensorflow,代码行数:34,代码来源:saved_model_test.py


示例19: testTags

  def testTags(self):
    export_dir = os.path.join(test.get_temp_dir(), "test_tags")
    builder = saved_model_builder.SavedModelBuilder(export_dir)

    # Graph with a single variable. SavedModel invoked to:
    # - add with weights.
    # - a single tag (from predefined constants).
    with self.test_session(graph=ops.Graph()) as sess:
      self._init_and_validate_variable(sess, "v", 42)
      builder.add_meta_graph_and_variables(sess, [tag_constants.TRAINING])

    # Graph that updates the single variable. SavedModel invoked to:
    # - simply add the model (weights are not updated).
    # - a single tag (from predefined constants).
    with self.test_session(graph=ops.Graph()) as sess:
      self._init_and_validate_variable(sess, "v", 43)
      builder.add_meta_graph([tag_constants.SERVING])

    # Graph that updates the single variable. SavedModel is invoked:
    # - to add the model (weights are not updated).
    # - multiple custom tags.
    with self.test_session(graph=ops.Graph()) as sess:
      self._init_and_validate_variable(sess, "v", 44)
      builder.add_meta_graph(["foo", "bar"])

    # Save the SavedModel to disk.
    builder.save()

    # Restore the graph with a single predefined tag whose variables were saved.
    with self.test_session(graph=ops.Graph()) as sess:
      loader.load(sess, [tag_constants.TRAINING], export_dir)
      self.assertEqual(
          42, ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0].eval())

    # Restore the graph with a single predefined tag whose variables were not
    # saved.
    with self.test_session(graph=ops.Graph()) as sess:
      loader.load(sess, [tag_constants.SERVING], export_dir)
      self.assertEqual(
          42, ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0].eval())

    # Restore the graph with multiple tags. Provide duplicate tags to test set
    # semantics.
    with self.test_session(graph=ops.Graph()) as sess:
      loader.load(sess, ["foo", "bar", "foo"], export_dir)
      self.assertEqual(
          42, ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0].eval())

    # Try restoring a graph with a non-existent tag. This should yield a runtime
    # error.
    with self.test_session(graph=ops.Graph()) as sess:
      self.assertRaises(RuntimeError, loader.load, sess, ["INVALID"],
                        export_dir)

    # Try restoring a graph where a subset of the tags match. Since tag matching
    # for meta graph defs follows "all" semantics, this should yield a runtime
    # error.
    with self.test_session(graph=ops.Graph()) as sess:
      self.assertRaises(RuntimeError, loader.load, sess, ["foo", "baz"],
                        export_dir)
开发者ID:adityaatluri,项目名称:tensorflow,代码行数:60,代码来源:saved_model_test.py


示例20: testBadSavedModelFileFormat

  def testBadSavedModelFileFormat(self):
    export_dir = os.path.join(test.get_temp_dir(),
                              "test_bad_saved_model_file_format")
    # Attempt to load a SavedModel from an export directory that does not exist.
    with self.test_session(graph=ops.Graph()) as sess:
      with self.assertRaisesRegexp(IOError,
                                   "SavedModel file does not exist at: %s" %
                                   export_dir):
        loader.load(sess, ["foo"], export_dir)

    os.makedirs(export_dir)
    # Write an invalid binary proto to saved_model.pb.
    path_to_pb = os.path.join(export_dir, constants.SAVED_MODEL_FILENAME_PB)
    with open(path_to_pb, "w") as f:
      f.write("invalid content")
    with self.test_session(graph=ops.Graph()) as sess:
      with self.assertRaisesRegexp(IOError, "Cannot parse file.*%s" %
                                   constants.SAVED_MODEL_FILENAME_PB):
        loader.load(sess, ["foo"], export_dir)

    # Cleanup the directory and start again.
    file_io.delete_recursively(export_dir)

    os.makedirs(export_dir)
    # Write an invalid text proto to saved_model.pbtxt
    path_to_pbtxt = os.path.join(export_dir,
                                 constants.SAVED_MODEL_FILENAME_PBTXT)
    with open(path_to_pbtxt, "w") as f:
      f.write("invalid content")
    with self.test_session(graph=ops.Graph()) as sess:
      with self.assertRaisesRegexp(IOError, "Cannot parse file.*%s" %
                                   constants.SAVED_MODEL_FILENAME_PBTXT):
        loader.load(sess, ["foo"], export_dir)
开发者ID:adityaatluri,项目名称:tensorflow,代码行数:33,代码来源:saved_model_test.py



注:本文中的tensorflow.python.platform.test.get_temp_dir函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python test.gpu_device_name函数代码示例发布时间:2022-05-27
下一篇:
Python resource_loader.load_resource函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap