• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python math_ops.lgamma函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.ops.math_ops.lgamma函数的典型用法代码示例。如果您正苦于以下问题:Python lgamma函数的具体用法?Python lgamma怎么用?Python lgamma使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了lgamma函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _log_prob

 def _log_prob(self, x):
   y = (x - self.mu) / self.sigma
   half_df = 0.5 * self.df
   return (math_ops.lgamma(0.5 + half_df) - math_ops.lgamma(half_df) - 0.5 *
           math_ops.log(self.df) - 0.5 * math.log(math.pi) -
           math_ops.log(self.sigma) -
           (0.5 + half_df) * math_ops.log(1. + math_ops.square(y) / self.df))
开发者ID:kadeng,项目名称:tensorflow,代码行数:7,代码来源:student_t.py


示例2: _log_normalization

 def _log_normalization(self, positive_counts):
   if self.validate_args:
     positive_counts = distribution_util.embed_check_nonnegative_discrete(
         positive_counts, check_integer=True)
   return (-math_ops.lgamma(self.total_count + positive_counts)
           + math_ops.lgamma(positive_counts + 1.)
           + math_ops.lgamma(self.total_count))
开发者ID:arnonhongklay,项目名称:tensorflow,代码行数:7,代码来源:negative_binomial.py


示例3: _entropy

 def _entropy(self):
   return (math_ops.lgamma(self.a) -
           (self.a - 1.) * math_ops.digamma(self.a) +
           math_ops.lgamma(self.b) -
           (self.b - 1.) * math_ops.digamma(self.b) -
           math_ops.lgamma(self.a_b_sum) +
           (self.a_b_sum - 2.) * math_ops.digamma(self.a_b_sum))
开发者ID:cg31,项目名称:tensorflow,代码行数:7,代码来源:beta.py


示例4: _kl_gamma_gamma

def _kl_gamma_gamma(g0, g1, name=None):
  """Calculate the batched KL divergence KL(g0 || g1) with g0 and g1 Gamma.

  Args:
    g0: instance of a Gamma distribution object.
    g1: instance of a Gamma distribution object.
    name: (optional) Name to use for created operations.
      Default is "kl_gamma_gamma".

  Returns:
    kl_gamma_gamma: `Tensor`. The batchwise KL(g0 || g1).
  """
  with ops.name_scope(name, "kl_gamma_gamma", values=[
      g0.concentration, g0.rate, g1.concentration, g1.rate]):
    # Result from:
    #   http://www.fil.ion.ucl.ac.uk/~wpenny/publications/densities.ps
    # For derivation see:
    #   http://stats.stackexchange.com/questions/11646/kullback-leibler-divergence-between-two-gamma-distributions   pylint: disable=line-too-long
    return (((g0.concentration - g1.concentration)
             * math_ops.digamma(g0.concentration))
            + math_ops.lgamma(g1.concentration)
            - math_ops.lgamma(g0.concentration)
            + g1.concentration * math_ops.log(g0.rate)
            - g1.concentration * math_ops.log(g1.rate)
            + g0.concentration * (g1.rate / g0.rate - 1.))
开发者ID:aritratony,项目名称:tensorflow,代码行数:25,代码来源:gamma.py


示例5: log_combinations

def log_combinations(n, counts, name="log_combinations"):
  """Multinomial coefficient.

  Given `n` and `counts`, where `counts` has last dimension `k`, we compute
  the multinomial coefficient as:

  ```n! / sum_i n_i!```

  where `i` runs over all `k` classes.

  Args:
    n: Numeric `Tensor` broadcastable with `counts`. This represents `n`
      outcomes.
    counts: Numeric `Tensor` broadcastable with `n`. This represents counts
      in `k` classes, where `k` is the last dimension of the tensor.
    name: A name for this operation (optional).

  Returns:
    `Tensor` representing the multinomial coefficient between `n` and `counts`.
  """
  # First a bit about the number of ways counts could have come in:
  # E.g. if counts = [1, 2], then this is 3 choose 2.
  # In general, this is (sum counts)! / sum(counts!)
  # The sum should be along the last dimension of counts.  This is the
  # "distribution" dimension. Here n a priori represents the sum of counts.
  with ops.name_scope(name, values=[n, counts]):
    n = ops.convert_to_tensor(n, name="n")
    counts = ops.convert_to_tensor(counts, name="counts")
    total_permutations = math_ops.lgamma(n + 1)
    counts_factorial = math_ops.lgamma(counts + 1)
    redundant_permutations = math_ops.reduce_sum(counts_factorial,
                                                 reduction_indices=[-1])
    return total_permutations - redundant_permutations
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:33,代码来源:distribution_util.py


示例6: log_prob

  def log_prob(self, x, name="log_prob"):
    """`Log(P[counts])`, computed for every batch member.

    Args:
      x:  Non-negative floating point tensor whose shape can
        be broadcast with `self.a` and `self.b`.  For fixed leading
        dimensions, the last dimension represents counts for the corresponding
        Beta distribution in `self.a` and `self.b`. `x` is only legal if
        0 < x < 1.
      name:  Name to give this Op, defaults to "log_prob".

    Returns:
      Log probabilities for each record, shape `[N1,...,Nm]`.
    """
    a = self._a
    b = self._b
    with ops.name_scope(self.name):
      with ops.name_scope(name, values=[a, x]):
        x = self._check_x(x)

        unnorm_pdf = (a - 1) * math_ops.log(x) + (
            b - 1) * math_ops.log(1 - x)
        normalization_factor = -(math_ops.lgamma(a) + math_ops.lgamma(b)
                                 - math_ops.lgamma(a + b))
        log_prob = unnorm_pdf + normalization_factor

        return log_prob
开发者ID:JamesFysh,项目名称:tensorflow,代码行数:27,代码来源:beta.py


示例7: _prob

 def _prob(self, x):
   y = (x - self.mu) / self.sigma
   half_df = 0.5 * self.df
   return (math_ops.exp(math_ops.lgamma(0.5 + half_df) -
                        math_ops.lgamma(half_df)) /
           (math_ops.sqrt(self.df) * math.sqrt(math.pi) * self.sigma) *
           math_ops.pow(1. + math_ops.square(y) / self.df, -(0.5 + half_df)))
开发者ID:moolighty,项目名称:tensorflow,代码行数:7,代码来源:student_t.py


示例8: nonempty_lbeta

 def nonempty_lbeta():
     log_prod_gamma_x = math_ops.reduce_sum(
         math_ops.lgamma(x), reduction_indices=[-1])
     sum_x = math_ops.reduce_sum(x, reduction_indices=[-1])
     log_gamma_sum_x = math_ops.lgamma(sum_x)
     result = log_prod_gamma_x - log_gamma_sum_x
     return result
开发者ID:pronobis,项目名称:tensorflow,代码行数:7,代码来源:special_math_ops.py


示例9: log_prob

  def log_prob(self, counts, name="log_prob"):
    """`Log(P[counts])`, computed for every batch member.

    For each batch member of counts `k`, `P[counts]` is the probability that
    after sampling `n` draws from this Binomial distribution, the number of
    successes is `k`.  Note that different sequences of draws can result in the
    same counts, thus the probability includes a combinatorial coefficient.

    Args:
      counts:  Non-negative tensor with dtype `dtype` and whose shape can be
        broadcast with `self.p` and `self.n`. `counts` is only legal if it is
        less than or equal to `n` and its components are equal to integer
        values.
      name:  Name to give this Op, defaults to "log_prob".

    Returns:
      Log probabilities for each record, shape `[N1,...,Nm]`.
    """
    n = self._n
    p = self._p
    with ops.name_scope(self.name):
      with ops.name_scope(name, values=[self._n, self._p, counts]):
        counts = self._check_counts(counts)

        prob_prob = counts * math_ops.log(p) + (
            n - counts) * math_ops.log(1 - p)

        combinations = math_ops.lgamma(n + 1) - math_ops.lgamma(
            counts + 1) - math_ops.lgamma(n - counts + 1)
        log_prob = prob_prob + combinations
        return log_prob
开发者ID:alephman,项目名称:Tensorflow,代码行数:31,代码来源:binomial.py


示例10: _log_prob

 def _log_prob(self, x):
   x = self._assert_valid_sample(x)
   log_unnormalized_prob = ((self.a - 1.) * math_ops.log(x) +
                            (self.b - 1.) * math_ops.log(1. - x))
   log_normalization = (math_ops.lgamma(self.a) +
                        math_ops.lgamma(self.b) -
                        math_ops.lgamma(self.a_b_sum))
   return log_unnormalized_prob - log_normalization
开发者ID:cg31,项目名称:tensorflow,代码行数:8,代码来源:beta.py


示例11: _log_prob

 def _log_prob(self, counts):
   counts = self._check_counts(counts)
   prob_prob = (counts * math_ops.log(self.p) +
                (self.n - counts) * math_ops.log(1. - self.p))
   combinations = (math_ops.lgamma(self.n + 1) -
                   math_ops.lgamma(counts + 1) -
                   math_ops.lgamma(self.n - counts + 1))
   log_prob = prob_prob + combinations
   return log_prob
开发者ID:bsantanas,项目名称:tensorflow,代码行数:9,代码来源:binomial.py


示例12: nonempty_lbeta

 def nonempty_lbeta():
   last_index = array_ops.size(array_ops.shape(x)) - 1
   log_prod_gamma_x = math_ops.reduce_sum(
       math_ops.lgamma(x),
       reduction_indices=last_index)
   sum_x = math_ops.reduce_sum(x, reduction_indices=last_index)
   log_gamma_sum_x = math_ops.lgamma(sum_x)
   result = log_prod_gamma_x - log_gamma_sum_x
   result.set_shape(x.get_shape()[:-1])
   return result
开发者ID:0-T-0,项目名称:tensorflow,代码行数:10,代码来源:special_math_ops.py


示例13: entropy

  def entropy(self, name="entropy"):
    """Entropy of the distribution in nats."""
    with ops.name_scope(self.name):
      with ops.name_scope(name, values=[self._a, self._b, self._a_b_sum]):
        a = self._a
        b = self._b
        a_b_sum = self._a_b_sum

        entropy = math_ops.lgamma(a) - (a - 1) * math_ops.digamma(a)
        entropy += math_ops.lgamma(b) - (b - 1) * math_ops.digamma(b)
        entropy += -math_ops.lgamma(a_b_sum) + (
            a_b_sum - 2) * math_ops.digamma(a_b_sum)
        return entropy
开发者ID:JamesFysh,项目名称:tensorflow,代码行数:13,代码来源:beta.py


示例14: _log_prob

 def _log_prob(self, x):
   x = self._assert_valid_sample(x)
   # broadcast logits or x if need be.
   logits = self.logits
   if (not x.get_shape().is_fully_defined() or
       not logits.get_shape().is_fully_defined() or
       x.get_shape() != logits.get_shape()):
     logits = array_ops.ones_like(x, dtype=logits.dtype) * logits
     x = array_ops.ones_like(logits, dtype=x.dtype) * x
   logits_shape = array_ops.shape(math_ops.reduce_sum(logits, axis=[-1]))
   logits_2d = array_ops.reshape(logits, [-1, self.event_size])
   x_2d = array_ops.reshape(x, [-1, self.event_size])
   # compute the normalization constant
   k = math_ops.cast(self.event_size, x.dtype)
   log_norm_const = (math_ops.lgamma(k)
                     + (k - 1.)
                     * math_ops.log(self.temperature))
   # compute the unnormalized density
   log_softmax = nn_ops.log_softmax(logits_2d - x_2d * self._temperature_2d)
   log_unnorm_prob = math_ops.reduce_sum(log_softmax, [-1], keepdims=False)
   # combine unnormalized density with normalization constant
   log_prob = log_norm_const + log_unnorm_prob
   # Reshapes log_prob to be consistent with shape of user-supplied logits
   ret = array_ops.reshape(log_prob, logits_shape)
   return ret
开发者ID:dananjayamahesh,项目名称:tensorflow,代码行数:25,代码来源:relaxed_onehot_categorical.py


示例15: _entropy

 def _entropy(self):
     return (
         self.alpha
         + math_ops.log(self.beta)
         + math_ops.lgamma(self.alpha)
         - (1.0 + self.alpha) * math_ops.digamma(self.alpha)
     )
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:7,代码来源:inverse_gamma.py


示例16: _multi_lgamma

 def _multi_lgamma(self, a, p, name="multi_lgamma"):
   """Computes the log multivariate gamma function; log(Gamma_p(a))."""
   with self._name_scope(name, values=[a, p]):
     seq = self._multi_gamma_sequence(a, p)
     return (0.25 * p * (p - 1.) * math.log(math.pi) +
             math_ops.reduce_sum(math_ops.lgamma(seq),
                                 reduction_indices=(-1,)))
开发者ID:ivankreso,项目名称:tensorflow,代码行数:7,代码来源:wishart.py


示例17: log_prob

  def log_prob(self, x, name="log_prob"):
    """Log prob of observations in `x` under these Gamma distribution(s).

    Args:
      x: tensor of dtype `dtype`, must be broadcastable with `alpha` and `beta`.
      name: The name to give this op.

    Returns:
      log_prob: tensor of dtype `dtype`, the log-PDFs of `x`.

    Raises:
      TypeError: if `x` and `alpha` are different dtypes.
    """
    with ops.name_scope(self.name):
      with ops.op_scope([self._alpha, self._beta, x], name):
        alpha = self._alpha
        beta = self._beta
        x = ops.convert_to_tensor(x)
        x = control_flow_ops.with_dependencies(
            [check_ops.assert_positive(x)] if self.strict else [],
            x)
        contrib_tensor_util.assert_same_float_dtype(tensors=[x,],
                                                    dtype=self.dtype)

        return (alpha * math_ops.log(beta) + (alpha - 1) * math_ops.log(x) -
                beta * x - math_ops.lgamma(self._alpha))
开发者ID:31H0B1eV,项目名称:tensorflow,代码行数:26,代码来源:gamma.py


示例18: _log_unnormalized_prob

 def _log_unnormalized_prob(self, x):
   if self.validate_args:
     x = distribution_util.embed_check_nonnegative_integer_form(x)
   else:
     # For consistency with cdf, we take the floor.
     x = math_ops.floor(x)
   return x * self.log_rate - math_ops.lgamma(1. + x)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:7,代码来源:poisson.py


示例19: _log_prob

 def _log_prob(self, x):
     x = control_flow_ops.with_dependencies([check_ops.assert_positive(x)] if self.validate_args else [], x)
     return (
         self.alpha * math_ops.log(self.beta)
         - math_ops.lgamma(self.alpha)
         - (self.alpha + 1.0) * math_ops.log(x)
         - self.beta / x
     )
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:8,代码来源:inverse_gamma.py


示例20: lbeta

def lbeta(x, name=None):
  r"""Computes \\(ln(|Beta(x)|)\\), reducing along the last dimension.

  Given one-dimensional `z = [z_0,...,z_{K-1}]`, we define

  $$Beta(z) = \prod_j Gamma(z_j) / Gamma(\sum_j z_j)$$

  And for `n + 1` dimensional `x` with shape `[N1, ..., Nn, K]`, we define
  $$lbeta(x)[i1, ..., in] = Log(|Beta(x[i1, ..., in, :])|)$$.

  In other words, the last dimension is treated as the `z` vector.

  Note that if `z = [u, v]`, then
  \\(Beta(z) = int_0^1 t^{u-1} (1 - t)^{v-1} dt\\), which defines the
  traditional bivariate beta function.

  If the last dimension is empty, we follow the convention that the sum over
  the empty set is zero, and the product is one.

  Args:
    x: A rank `n + 1` `Tensor`, `n >= 0` with type `float`, or `double`.
    name: A name for the operation (optional).

  Returns:
    The logarithm of \\(|Beta(x)|\\) reducing along the last dimension.
  """
  # In the event that the last dimension has zero entries, we return -inf.
  # This is consistent with a convention that the sum over the empty set 0, and
  # the product is 1.
  # This is standard.  See https://en.wikipedia.org/wiki/Empty_set.
  with ops.name_scope(name, 'lbeta', [x]):
    x = ops.convert_to_tensor(x, name='x')

    # Note reduce_sum([]) = 0.
    log_prod_gamma_x = math_ops.reduce_sum(
        math_ops.lgamma(x), reduction_indices=[-1])

    # Note lgamma(0) = infinity, so if x = []
    # log_gamma_sum_x = lgamma(0) = infinity, and
    # log_prod_gamma_x = lgamma(1) = 0,
    # so result = -infinity
    sum_x = math_ops.reduce_sum(x, axis=[-1])
    log_gamma_sum_x = math_ops.lgamma(sum_x)
    result = log_prod_gamma_x - log_gamma_sum_x

    return result
开发者ID:meteorcloudy,项目名称:tensorflow,代码行数:46,代码来源:special_math_ops.py



注:本文中的tensorflow.python.ops.math_ops.lgamma函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python math_ops.linspace函数代码示例发布时间:2022-05-27
下一篇:
Python math_ops.less_equal函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap