本文整理汇总了Python中tensorflow.python.ops.math_ops.less_equal函数的典型用法代码示例。如果您正苦于以下问题:Python less_equal函数的具体用法?Python less_equal怎么用?Python less_equal使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了less_equal函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: maybe_update_masks
def maybe_update_masks():
with ops.name_scope(self._spec.name):
is_step_within_pruning_range = math_ops.logical_and(
math_ops.greater_equal(self._global_step,
self._spec.begin_pruning_step),
# If end_pruning_step is negative, keep pruning forever!
math_ops.logical_or(
math_ops.less_equal(self._global_step,
self._spec.end_pruning_step),
math_ops.less(self._spec.end_pruning_step, 0)))
is_pruning_step = math_ops.less_equal(
math_ops.add(self._last_update_step, self._spec.pruning_frequency),
self._global_step)
return math_ops.logical_and(is_step_within_pruning_range,
is_pruning_step)
开发者ID:SylChan,项目名称:tensorflow,代码行数:15,代码来源:pruning.py
示例2: _filter_input
def _filter_input(input_tensor, vocab_freq_table, vocab_min_count,
vocab_subsampling, corpus_size, seed):
"""Filters input tensor based on vocab freq, threshold, and subsampling."""
if vocab_freq_table is None:
return input_tensor
if not isinstance(vocab_freq_table, lookup.InitializableLookupTableBase):
raise ValueError(
"vocab_freq_table must be a subclass of "
"InitializableLookupTableBase (such as HashTable) instead of type "
"{}.".format(type(vocab_freq_table)))
with ops.name_scope(
"filter_vocab", values=[vocab_freq_table, input_tensor, vocab_min_count]):
freq = vocab_freq_table.lookup(input_tensor)
# Filters out elements in input_tensor that are not found in
# vocab_freq_table (table returns a default value of -1 specified above when
# an element is not found).
mask = math_ops.not_equal(freq, vocab_freq_table.default_value)
# Filters out elements whose vocab frequencies are less than the threshold.
if vocab_min_count is not None:
cast_threshold = math_ops.cast(vocab_min_count, freq.dtype)
mask = math_ops.logical_and(mask,
math_ops.greater_equal(freq, cast_threshold))
input_tensor = array_ops.boolean_mask(input_tensor, mask)
freq = array_ops.boolean_mask(freq, mask)
if not vocab_subsampling:
return input_tensor
if vocab_subsampling < 0 or vocab_subsampling > 1:
raise ValueError(
"Invalid vocab_subsampling={} - it should be within range [0, 1].".
format(vocab_subsampling))
# Subsamples the input tokens based on vocabulary frequency and
# vocab_subsampling threshold (ie randomly discard commonly appearing
# tokens).
with ops.name_scope(
"subsample_vocab", values=[input_tensor, freq, vocab_subsampling]):
corpus_size = math_ops.cast(corpus_size, dtypes.float64)
freq = math_ops.cast(freq, dtypes.float64)
vocab_subsampling = math_ops.cast(vocab_subsampling, dtypes.float64)
# From tensorflow_models/tutorials/embedding/word2vec_kernels.cc, which is
# suppose to correlate with Eq. 5 in http://arxiv.org/abs/1310.4546.
keep_prob = ((math_ops.sqrt(freq /
(vocab_subsampling * corpus_size)) + 1.0) *
(vocab_subsampling * corpus_size / freq))
random_prob = random_ops.random_uniform(
array_ops.shape(freq),
minval=0,
maxval=1,
dtype=dtypes.float64,
seed=seed)
mask = math_ops.less_equal(random_prob, keep_prob)
return array_ops.boolean_mask(input_tensor, mask)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:60,代码来源:skip_gram_ops.py
示例3: _single_seq_fn
def _single_seq_fn():
log_norm = math_ops.reduce_logsumexp(first_input, [1])
# Mask `log_norm` of the sequences with length <= zero.
log_norm = array_ops.where(math_ops.less_equal(sequence_lengths, 0),
array_ops.zeros_like(log_norm),
log_norm)
return log_norm
开发者ID:Jordan1237,项目名称:tensorflow,代码行数:7,代码来源:crf.py
示例4: assert_less_equal
def assert_less_equal(x, y, data=None, summarize=None, name=None):
"""Assert the condition `x <= y` holds element-wise.
This condition holds if for every pair of (possibly broadcast) elements
`x[i]`, `y[i]`, we have `x[i] <= y[i]`.
If both `x` and `y` are empty, this is trivially satisfied.
Args:
x: Numeric `Tensor`.
y: Numeric `Tensor`, same dtype as and broadcastable to `x`.
data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of `x`, `y`.
summarize: Print this many entries of each tensor.
name: A name for this operation (optional). Defaults to "assert_less_equal"
Returns:
Op that raises `InvalidArgumentError` if `x <= y` is False.
"""
with ops.op_scope([x, y, data], name, 'assert_less_equal'):
x = ops.convert_to_tensor(x, name='x')
y = ops.convert_to_tensor(y, name='y')
if data is None:
data = [
'Condition x <= y did not hold element-wise: x = ', x.name, x, 'y = ',
y.name, y
]
condition = math_ops.reduce_all(math_ops.less_equal(x, y))
return logging_ops.Assert(condition, data, summarize=summarize)
开发者ID:2er0,项目名称:tensorflow,代码行数:28,代码来源:check_ops.py
示例5: _hinge_loss
def _hinge_loss(logits, target):
check_shape_op = control_flow_ops.Assert(
math_ops.less_equal(array_ops.rank(target), 2),
["target's shape should be either [batch_size, 1] or [batch_size]"])
with ops.control_dependencies([check_shape_op]):
target = array_ops.reshape(target, shape=[array_ops.shape(target)[0], 1])
return losses.hinge_loss(logits, target)
开发者ID:KalraA,项目名称:tensorflow,代码行数:7,代码来源:linear.py
示例6: _softmax_cross_entropy_loss
def _softmax_cross_entropy_loss(logits, target):
check_shape_op = control_flow_ops.Assert(
math_ops.less_equal(array_ops.rank(target), 2),
["target's shape should be either [batch_size, 1] or [batch_size]"])
with ops.control_dependencies([check_shape_op]):
target = array_ops.reshape(target, shape=[array_ops.shape(target)[0]])
return nn.sparse_softmax_cross_entropy_with_logits(logits, target)
开发者ID:KalraA,项目名称:tensorflow,代码行数:7,代码来源:linear.py
示例7: testPositive
def testPositive(self):
n = int(10e3)
for dt in [dtypes.float16, dtypes.float32, dtypes.float64]:
with self.cached_session():
x = random_ops.random_gamma(shape=[n], alpha=0.001, dtype=dt, seed=0)
self.assertEqual(0, math_ops.reduce_sum(math_ops.cast(
math_ops.less_equal(x, 0.), dtype=dtypes.int64)).eval())
开发者ID:abhinav-upadhyay,项目名称:tensorflow,代码行数:7,代码来源:random_gamma_test.py
示例8: assert_close
def assert_close(
x, y, data=None, summarize=None, message=None, name="assert_close"):
"""Assert that that x and y are within machine epsilon of each other.
Args:
x: Numeric `Tensor`
y: Numeric `Tensor`
data: The tensors to print out if the condition is `False`. Defaults to
error message and first few entries of `x` and `y`.
summarize: Print this many entries of each tensor.
message: A string to prefix to the default message.
name: A name for this operation (optional).
Returns:
Op raising `InvalidArgumentError` if |x - y| > machine epsilon.
"""
message = message or ""
x = ops.convert_to_tensor(x, name="x")
y = ops.convert_to_tensor(y, name="y")
if x.dtype.is_integer:
return check_ops.assert_equal(
x, y, data=data, summarize=summarize, message=message, name=name)
with ops.name_scope(name, "assert_close", [x, y, data]):
tol = np.finfo(x.dtype.as_numpy_dtype).resolution
if data is None:
data = [
message,
"Condition x ~= y did not hold element-wise: x = ", x.name, x, "y = ",
y.name, y
]
condition = math_ops.reduce_all(math_ops.less_equal(math_ops.abs(x-y), tol))
return control_flow_ops.Assert(
condition, data, summarize=summarize)
开发者ID:Nishant23,项目名称:tensorflow,代码行数:35,代码来源:distribution_util.py
示例9: loss_fn
def loss_fn(logits, labels):
check_shape_op = control_flow_ops.Assert(
math_ops.less_equal(array_ops.rank(labels), 2),
["labels shape should be either [batch_size, 1] or [batch_size]"])
with ops.control_dependencies([check_shape_op]):
labels = array_ops.reshape(
labels, shape=[array_ops.shape(labels)[0], 1])
return losses.hinge_loss(logits, labels)
开发者ID:HKUST-SING,项目名称:tensorflow,代码行数:8,代码来源:head.py
示例10: _log_loss_with_two_classes
def _log_loss_with_two_classes(logits, target):
check_shape_op = control_flow_ops.Assert(
math_ops.less_equal(array_ops.rank(target), 2),
["target's shape should be either [batch_size, 1] or [batch_size]"])
with ops.control_dependencies([check_shape_op]):
target = array_ops.reshape(target, shape=[array_ops.shape(target)[0], 1])
return nn.sigmoid_cross_entropy_with_logits(
logits, math_ops.to_float(target))
开发者ID:KalraA,项目名称:tensorflow,代码行数:8,代码来源:linear.py
示例11: _loss_fn
def _loss_fn(logits, labels):
with ops.name_scope(None, "hinge_loss", (logits, labels)) as name:
check_shape_op = control_flow_ops.Assert(
math_ops.less_equal(array_ops.rank(labels), 2),
("labels shape should be either [batch_size, 1] or [batch_size]",))
with ops.control_dependencies((check_shape_op,)):
labels = array_ops.reshape(
labels, shape=(array_ops.shape(labels)[0], 1))
return losses.hinge_loss(logits, labels, scope=name)
开发者ID:RapidApplicationDevelopment,项目名称:tensorflow,代码行数:9,代码来源:head.py
示例12: loop_body
def loop_body(loop_count, cdf):
temp = math_ops.reduce_sum(
math_ops.cast(
math_ops.less_equal(indices, loop_count), dtypes.float32))
cdf = math_ops.add(
cdf,
array_ops.one_hot(
loop_count, depth=nbins, on_value=temp, off_value=0.0))
return [loop_count + 1, cdf]
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:9,代码来源:pruning_utils.py
示例13: _reshape_targets
def _reshape_targets(targets):
if targets is None:
return None
check_shape_op = control_flow_ops.Assert(
math_ops.less_equal(array_ops.rank(targets), 2),
["target's should be either [batch_size, n_labels] or [batch_size]"])
with ops.control_dependencies([check_shape_op]):
targets = array_ops.reshape(
targets, shape=[array_ops.shape(targets)[0], -1])
return targets
开发者ID:KalraA,项目名称:tensorflow,代码行数:10,代码来源:dnn_sampled_softmax_classifier.py
示例14: _reshape_targets
def _reshape_targets(targets):
""""Reshapes targets into [batch_size, 1] to be compatible with logits."""
check_shape_op = control_flow_ops.Assert(
math_ops.less_equal(array_ops.rank(targets), 2),
["targets shape should be either [batch_size, 1] or [batch_size]"])
with ops.control_dependencies([check_shape_op]):
targets = array_ops.reshape(targets,
shape=[array_ops.shape(targets)[0], 1])
return targets
开发者ID:MrCrumpets,项目名称:tensorflow,代码行数:10,代码来源:dnn.py
示例15: _assert_close
def _assert_close(x, y, data=None, summarize=None, name=None):
if x.dtype.is_integer:
return check_ops.assert_equal(x, y, data=data, summarize=summarize, name=name)
with ops.op_scope([x, y, data], name, "assert_close"):
x = ops.convert_to_tensor(x, name="x")
y = ops.convert_to_tensor(y, name="y")
tol = np.finfo(x.dtype.as_numpy_dtype).resolution
if data is None:
data = ["Condition x ~= y did not hold element-wise: x = ", x.name, x, "y = ", y.name, y]
condition = math_ops.reduce_all(math_ops.less_equal(math_ops.abs(x - y), tol))
return logging_ops.Assert(condition, data, summarize=summarize)
开发者ID:ChaitanyaCixLive,项目名称:tensorflow,代码行数:12,代码来源:dirichlet.py
示例16: max_reduce_fn
def max_reduce_fn(state, value):
"""Computes the maximum shape to pad to."""
condition = math_ops.reduce_all(
math_ops.logical_or(
math_ops.less_equal(value.dense_shape, padded_shape),
math_ops.equal(padded_shape, -1)))
assert_op = control_flow_ops.Assert(condition, [
"Actual shape greater than padded shape: ", value.dense_shape,
padded_shape
])
with ops.control_dependencies([assert_op]):
return math_ops.maximum(state, value.dense_shape)
开发者ID:ZhangXinNan,项目名称:tensorflow,代码行数:12,代码来源:batching.py
示例17: element_to_bucket_id
def element_to_bucket_id(*args):
"""Return int64 id of the length bucket for this element."""
seq_length = element_length_func(*args)
boundaries = list(bucket_boundaries)
buckets_min = [np.iinfo(np.int32).min] + boundaries
buckets_max = boundaries + [np.iinfo(np.int32).max]
conditions_c = math_ops.logical_and(
math_ops.less_equal(buckets_min, seq_length),
math_ops.less(seq_length, buckets_max))
bucket_id = math_ops.reduce_min(array_ops.where(conditions_c))
return bucket_id
开发者ID:bunbutter,项目名称:tensorflow,代码行数:13,代码来源:grouping.py
示例18: _binary_hinge_loss
def _binary_hinge_loss(logits, target):
"""Method that returns the loss vector for binary hinge loss."""
check_shape_op = logging_ops.Assert(
math_ops.less_equal(array_ops.rank(target), 2),
["target's shape should be either [batch_size, 1] or [batch_size]"],
)
with ops.control_dependencies([check_shape_op]):
target = array_ops.reshape(target, shape=[array_ops.shape(target)[0], 1])
# First need to convert binary labels to -1/1 labels (as floats).
all_ones = array_ops.ones_like(logits)
labels = math_ops.sub(2 * math_ops.to_float(target), all_ones)
loss_vec = nn_ops.relu(math_ops.sub(all_ones, math_ops.mul(labels, logits)))
return loss_vec
开发者ID:sathishreddy,项目名称:tensorflow,代码行数:13,代码来源:target_column.py
示例19: pairwise_distance
def pairwise_distance(feature, squared=False):
"""Computes the pairwise distance matrix with numerical stability.
output[i, j] = || feature[i, :] - feature[j, :] ||_2
Args:
feature: 2-D Tensor of size [number of data, feature dimension].
squared: Boolean, whether or not to square the pairwise distances.
Returns:
pairwise_distances: 2-D Tensor of size [number of data, number of data].
"""
pairwise_distances_squared = math_ops.add(
math_ops.reduce_sum(
math_ops.square(feature),
axis=[1],
keepdims=True),
math_ops.reduce_sum(
math_ops.square(
array_ops.transpose(feature)),
axis=[0],
keepdims=True)) - 2.0 * math_ops.matmul(
feature, array_ops.transpose(feature))
# Deal with numerical inaccuracies. Set small negatives to zero.
pairwise_distances_squared = math_ops.maximum(pairwise_distances_squared, 0.0)
# Get the mask where the zero distances are at.
error_mask = math_ops.less_equal(pairwise_distances_squared, 0.0)
# Optionally take the sqrt.
if squared:
pairwise_distances = pairwise_distances_squared
else:
pairwise_distances = math_ops.sqrt(
pairwise_distances_squared + math_ops.to_float(error_mask) * 1e-16)
# Undo conditionally adding 1e-16.
pairwise_distances = math_ops.multiply(
pairwise_distances, math_ops.to_float(math_ops.logical_not(error_mask)))
num_data = array_ops.shape(feature)[0]
# Explicitly set diagonals to zero.
mask_offdiagonals = array_ops.ones_like(pairwise_distances) - array_ops.diag(
array_ops.ones([num_data]))
pairwise_distances = math_ops.multiply(pairwise_distances, mask_offdiagonals)
return pairwise_distances
开发者ID:dananjayamahesh,项目名称:tensorflow,代码行数:46,代码来源:metric_loss_ops.py
示例20: assert_less_equal
def assert_less_equal(x, y, data=None, summarize=None, message=None, name=None):
"""Assert the condition `x <= y` holds element-wise.
Example of adding a dependency to an operation:
```python
with tf.control_dependencies([tf.assert_less_equal(x, y)]):
output = tf.reduce_sum(x)
```
This condition holds if for every pair of (possibly broadcast) elements
`x[i]`, `y[i]`, we have `x[i] <= y[i]`.
If both `x` and `y` are empty, this is trivially satisfied.
Args:
x: Numeric `Tensor`.
y: Numeric `Tensor`, same dtype as and broadcastable to `x`.
data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of `x`, `y`.
summarize: Print this many entries of each tensor.
message: A string to prefix to the default message.
name: A name for this operation (optional). Defaults to "assert_less_equal"
Returns:
Op that raises `InvalidArgumentError` if `x <= y` is False.
"""
message = message or ''
with ops.name_scope(name, 'assert_less_equal', [x, y, data]):
x = ops.convert_to_tensor(x, name='x')
y = ops.convert_to_tensor(y, name='y')
if context.executing_eagerly():
x_name = _shape_and_dtype_str(x)
y_name = _shape_and_dtype_str(y)
else:
x_name = x.name
y_name = y.name
if data is None:
data = [
message,
'Condition x <= y did not hold element-wise:'
'x (%s) = ' % x_name, x, 'y (%s) = ' % y_name, y
]
condition = math_ops.reduce_all(math_ops.less_equal(x, y))
return control_flow_ops.Assert(condition, data, summarize=summarize)
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:45,代码来源:check_ops.py
注:本文中的tensorflow.python.ops.math_ops.less_equal函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论