本文整理汇总了Python中tensorflow.python.ops.math_ops.exp函数的典型用法代码示例。如果您正苦于以下问题:Python exp函数的具体用法?Python exp怎么用?Python exp使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了exp函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: _forward
def _forward(self, x):
x = self._maybe_assert_valid_x(x)
if self.power == 0.:
return math_ops.exp(x)
# If large x accuracy is an issue, consider using:
# (1. + x * self.power)**(1. / self.power) when x >> 1.
return math_ops.exp(math_ops.log1p(x * self.power) / self.power)
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:7,代码来源:power_transform.py
示例2: test_one_dimensional_arg
def test_one_dimensional_arg(self):
# Should evaluate to 1 and 1/2.
x_one = [1, 1.]
x_one_half = [2, 1.]
with self.test_session(use_gpu=self._use_gpu):
self.assertAllClose(1, math_ops.exp(special_math_ops.lbeta(x_one)).eval())
self.assertAllClose(
0.5, math_ops.exp(special_math_ops.lbeta(x_one_half)).eval())
self.assertEqual([], special_math_ops.lbeta(x_one).get_shape())
开发者ID:Immexxx,项目名称:tensorflow,代码行数:9,代码来源:special_math_ops_test.py
示例3: test_length_1_last_dimension_results_in_one
def test_length_1_last_dimension_results_in_one(self):
# If there is only one coefficient, the formula still works, and we get one
# as the answer, always.
x_a = [5.5]
x_b = [0.1]
with self.test_session(use_gpu=True):
self.assertAllClose(1, math_ops.exp(special_math_ops.lbeta(x_a)).eval())
self.assertAllClose(1, math_ops.exp(special_math_ops.lbeta(x_b)).eval())
self.assertEqual((), special_math_ops.lbeta(x_a).get_shape())
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:9,代码来源:special_math_ops_test.py
示例4: jensen_shannon
def jensen_shannon(logu, self_normalized=False, name=None):
"""The Jensen-Shannon Csiszar-function in log-space.
A Csiszar-function is a member of,
```none
F = { f:R_+ to R : f convex }.
```
When `self_normalized = True`, the Jensen-Shannon Csiszar-function is:
```none
f(u) = u log(u) - (1 + u) log(1 + u) + (u + 1) log(2)
```
When `self_normalized = False` the `(u + 1) log(2)` term is omitted.
Observe that as an f-Divergence, this Csiszar-function implies:
```none
D_f[p, q] = KL[p, m] + KL[q, m]
m(x) = 0.5 p(x) + 0.5 q(x)
```
In a sense, this divergence is the "reverse" of the Arithmetic-Geometric
f-Divergence.
This Csiszar-function induces a symmetric f-Divergence, i.e.,
`D_f[p, q] = D_f[q, p]`.
Warning: this function makes non-log-space calculations and may therefore be
numerically unstable for `|logu| >> 0`.
For more information, see:
Lin, J. "Divergence measures based on the Shannon entropy." IEEE Trans.
Inf. Th., 37, 145-151, 1991.
Args:
logu: Floating-type `Tensor` representing `log(u)` from above.
self_normalized: Python `bool` indicating whether `f'(u=1)=0`. When
`f'(u=1)=0` the implied Csiszar f-Divergence remains non-negative even
when `p, q` are unnormalized measures.
name: Python `str` name prefixed to Ops created by this function.
Returns:
jensen_shannon_of_u: Floating-type `Tensor` of the Csiszar-function
evaluated at `u = exp(logu)`.
"""
with ops.name_scope(name, "jensen_shannon", [logu]):
logu = ops.convert_to_tensor(logu, name="logu")
npdt = logu.dtype.as_numpy_dtype
y = nn_ops.softplus(logu)
if self_normalized:
y -= np.log(2).astype(npdt)
return math_ops.exp(logu) * logu - (1. + math_ops.exp(logu)) * y
开发者ID:Joetz,项目名称:tensorflow,代码行数:56,代码来源:csiszar_divergence_impl.py
示例5: _SoftplusGradGrad
def _SoftplusGradGrad(op, grad):
# Let:
# y = tf.nn.softplus(x)
# dx = gen_nn_ops.softplus_grad(dy, x) = dy / (1 + exp(-x))
# This op computes (ddy, d2x) from op.inputs == [dy, x] and grad == ddx.
dy, x = op.inputs
with ops.control_dependencies([grad]):
ddy = gen_nn_ops.softplus_grad(grad, x)
d2x = grad * dy / (math_ops.exp(-x) + 2.0 + math_ops.exp(x))
return (ddy, d2x)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:10,代码来源:nn_grad.py
示例6: _compute_energy_change
def _compute_energy_change(current_target_log_prob,
current_momentums,
proposed_target_log_prob,
proposed_momentums,
independent_chain_ndims,
name=None):
"""Helper to `kernel` which computes the energy change."""
with ops.name_scope(
name, "compute_energy_change",
([current_target_log_prob, proposed_target_log_prob,
independent_chain_ndims] +
current_momentums + proposed_momentums)):
# Abbreviate lk0=log_kinetic_energy and lk1=proposed_log_kinetic_energy
# since they're a mouthful and lets us inline more.
lk0, lk1 = [], []
for current_momentum, proposed_momentum in zip(current_momentums,
proposed_momentums):
axis = math_ops.range(independent_chain_ndims,
array_ops.rank(current_momentum))
lk0.append(_log_sum_sq(current_momentum, axis))
lk1.append(_log_sum_sq(proposed_momentum, axis))
lk0 = -np.log(2.) + math_ops.reduce_logsumexp(array_ops.stack(lk0, axis=-1),
axis=-1)
lk1 = -np.log(2.) + math_ops.reduce_logsumexp(array_ops.stack(lk1, axis=-1),
axis=-1)
lp0 = -current_target_log_prob # log_potential
lp1 = -proposed_target_log_prob # proposed_log_potential
x = array_ops.stack([lp1, math_ops.exp(lk1), -lp0, -math_ops.exp(lk0)],
axis=-1)
# The sum is NaN if any element is NaN or we see both +Inf and -Inf.
# Thus we will replace such rows with infinite energy change which implies
# rejection. Recall that float-comparisons with NaN are always False.
is_sum_determinate = (
math_ops.reduce_all(math_ops.is_finite(x) | (x >= 0.), axis=-1) &
math_ops.reduce_all(math_ops.is_finite(x) | (x <= 0.), axis=-1))
is_sum_determinate = array_ops.tile(
is_sum_determinate[..., array_ops.newaxis],
multiples=array_ops.concat([
array_ops.ones(array_ops.rank(is_sum_determinate),
dtype=dtypes.int32),
[4],
], axis=0))
x = array_ops.where(is_sum_determinate,
x,
array_ops.fill(array_ops.shape(x),
value=x.dtype.as_numpy_dtype(np.inf)))
return math_ops.reduce_sum(x, axis=-1)
开发者ID:Yashar78,项目名称:tensorflow,代码行数:50,代码来源:hmc_impl.py
示例7: cosh
def cosh(x, name="cosh"):
"""Hyperbolic cosine: `cosh(x) = (e**x + e**-x) / 2`.
For `x in (-inf, inf)`, `arccosh(cosh(x)) = cosh(arccosh(x)) = x.`
Args:
x: Numeric `Tensor`.
name: A string name to prepend to created Ops.
Returns:
Numeric `Tensor` of same `shape` and `dtype` as `x`.
"""
with ops.name_scope(name):
x = ops.convert_to_tensor(x, name="x")
return 0.5 * (math_ops.exp(x) + math_ops.exp(-x))
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:15,代码来源:trig.py
示例8: ctc_loss_and_grad
def ctc_loss_and_grad(logits, labels, label_length, logit_length, unique=None):
"""Computes the CTC loss and gradients.
Most users will want fwd_bwd.ctc_loss
This function returns the computed gradient, it does not have a gradient
of its own defined.
Args:
logits: tensor of shape [frames, batch_size, num_labels]
labels: tensor of shape [batch_size, max_label_seq_length]
label_length: tensor of shape [batch_size]
Length of reference label sequence in labels.
logit_length: tensor of shape [batch_size]
Length of input sequence in logits.
unique: (optional) unique label indices as computed by unique(labels)
If supplied, enables an implementation that is faster and more memory
efficient on TPU.
Returns:
loss: tensor of shape [batch_size]
gradient: tensor of shape [frames, batch_size, num_labels]
"""
num_labels = _get_dim(logits, 2)
max_label_seq_length = _get_dim(labels, 1)
ilabel_log_probs = nn_ops.log_softmax(logits)
state_log_probs = _ilabel_to_state(labels, num_labels, ilabel_log_probs)
state_trans_probs = _ctc_state_trans(labels)
initial_state_log_probs, final_state_log_probs = ctc_state_log_probs(
label_length, max_label_seq_length)
fwd_bwd_log_probs, log_likelihood = _forward_backward_log(
state_trans_log_probs=math_ops.log(state_trans_probs),
initial_state_log_probs=initial_state_log_probs,
final_state_log_probs=final_state_log_probs,
observed_log_probs=state_log_probs,
sequence_length=logit_length)
if unique:
olabel_log_probs = _state_to_olabel_unique(
labels, num_labels, fwd_bwd_log_probs, unique)
else:
olabel_log_probs = _state_to_olabel(labels, num_labels, fwd_bwd_log_probs)
grad = math_ops.exp(ilabel_log_probs) - math_ops.exp(olabel_log_probs)
loss = -log_likelihood
return loss, grad
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:48,代码来源:ctc_ops.py
示例9: _call_cdf
def _call_cdf(self, value, name, **kwargs):
with self._name_scope(name, values=[value]):
value = ops.convert_to_tensor(value, name="value")
try:
return self._cdf(value, **kwargs)
except NotImplementedError:
return math_ops.exp(self._log_cdf(value, **kwargs))
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:7,代码来源:distribution.py
示例10: _ErfGrad
def _ErfGrad(op, grad):
"""Returns grad * 2/sqrt(pi) * exp(-x**2)."""
x = op.inputs[0]
two_over_root_pi = constant_op.constant(2 / np.sqrt(np.pi), dtype=grad.dtype)
with ops.control_dependencies([grad]):
x = math_ops.conj(x)
return grad * two_over_root_pi * math_ops.exp(-math_ops.square(x))
开发者ID:neuroradiology,项目名称:tensorflow,代码行数:7,代码来源:math_grad.py
示例11: monte_carlo_hypersphere_volume
def monte_carlo_hypersphere_volume(dist, num_samples, radius, center):
# https://en.wikipedia.org/wiki/Importance_sampling
x = dist.sample(num_samples, seed=seed)
x = array_ops.identity(x) # Invalidate bijector cacheing.
return math_ops.reduce_mean(
math_ops.exp(-dist.log_prob(x)) * is_in_ball(x, radius, center),
axis=0)
开发者ID:ahmedsaiduk,项目名称:tensorflow,代码行数:7,代码来源:test_util.py
示例12: _ErfcGrad
def _ErfcGrad(op, grad):
"""Returns -grad * 2/sqrt(pi) * exp(-x**2)."""
x = op.inputs[0]
minus_two_over_root_pi = constant_op.constant(-2 / np.sqrt(np.pi),
dtype=grad.dtype)
with ops.control_dependencies([grad.op]):
return grad * minus_two_over_root_pi * math_ops.exp(-math_ops.square(x))
开发者ID:TeMedy,项目名称:tensorflow,代码行数:7,代码来源:math_grad.py
示例13: cdf
def cdf(self, value, name="cdf", **condition_kwargs):
"""Cumulative distribution function.
Given random variable `X`, the cumulative distribution function `cdf` is:
```
cdf(x) := P[X <= x]
```
Args:
value: `float` or `double` `Tensor`.
name: The name to give this op.
**condition_kwargs: Named arguments forwarded to subclass implementation.
Returns:
cdf: a `Tensor` of shape `sample_shape(x) + self.batch_shape` with
values of type `self.dtype`.
"""
with self._name_scope(name, values=[value]):
value = ops.convert_to_tensor(value, name="value")
try:
return self._cdf(value, **condition_kwargs)
except NotImplementedError as original_exception:
try:
return math_ops.exp(self._log_cdf(value, **condition_kwargs))
except NotImplementedError:
raise original_exception
开发者ID:ComeOnGetMe,项目名称:tensorflow,代码行数:27,代码来源:distribution.py
示例14: test_two_dimensional_arg_dynamic
def test_two_dimensional_arg_dynamic(self):
# Should evaluate to 1/2.
x_one_half = [[2, 1.], [2, 1.]]
with self.test_session(use_gpu=True):
ph = array_ops.placeholder(dtypes.float32)
beta_ph = math_ops.exp(special_math_ops.lbeta(ph))
self.assertAllClose([0.5, 0.5], beta_ph.eval(feed_dict={ph: x_one_half}))
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:7,代码来源:special_math_ops_test.py
示例15: test_two_dimensional_arg
def test_two_dimensional_arg(self):
# Should evaluate to 1/2.
x_one_half = [[2, 1.], [2, 1.]]
with self.test_session(use_gpu=self._use_gpu):
self.assertAllClose(
[0.5, 0.5], math_ops.exp(special_math_ops.lbeta(x_one_half)).eval())
self.assertEqual((2,), special_math_ops.lbeta(x_one_half).get_shape())
开发者ID:Immexxx,项目名称:tensorflow,代码行数:7,代码来源:special_math_ops_test.py
示例16: gradient_clipping
def gradient_clipping(grads_and_vars):
"""Internal function for adaptive clipping."""
grads, variables = zip(*grads_and_vars)
norm = clip_ops.global_norm(grads)
max_norm, log_mean = _adaptive_max_norm(norm, std_factor, decay,
global_step, epsilon, name)
# reports the max gradient norm for debugging
if report_summary:
summary.scalar("global_norm/adaptive_max_gradient_norm", max_norm)
# factor will be 1. if norm is smaller than max_norm
factor = array_ops.where(norm < max_norm,
array_ops.ones_like(norm),
math_ops.exp(log_mean) / norm)
if static_max_norm is not None:
factor = math_ops.minimum(static_max_norm / norm, factor)
# apply factor
clipped_grads = []
for grad in grads:
if grad is None:
clipped_grads.append(None)
elif isinstance(grad, ops.IndexedSlices):
clipped_grads.append(
ops.IndexedSlices(grad.values * factor, grad.indices,
grad.dense_shape))
else:
clipped_grads.append(grad * factor)
return list(zip(clipped_grads, variables))
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:34,代码来源:optimizers.py
示例17: _logspace_mean
def _logspace_mean(log_values):
"""Evaluate `Log[E[values]]` in a stable manner.
Args:
log_values: `Tensor` holding `Log[values]`.
Returns:
`Tensor` of same `dtype` as `log_values`, reduced across dim 0.
`Log[Mean[values]]`.
"""
# center = Max[Log[values]], with stop-gradient
# The center hopefully keep the exponentiated term small. It is cancelled
# from the final result, so putting stop gradient on it will not change the
# final result. We put stop gradient on to eliminate unnecessary computation.
center = array_ops.stop_gradient(_sample_max(log_values))
# centered_values = exp{Log[values] - E[Log[values]]}
centered_values = math_ops.exp(log_values - center)
# log_mean_of_values = Log[ E[centered_values] ] + center
# = Log[ E[exp{log_values - E[log_values]}] ] + center
# = Log[E[values]] - E[log_values] + center
# = Log[E[values]]
log_mean_of_values = math_ops.log(_sample_mean(centered_values)) + center
return log_mean_of_values
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:26,代码来源:monte_carlo_impl.py
示例18: exact_laplacian_kernel
def exact_laplacian_kernel(x, y, stddev):
"""Computes exact Laplacian kernel value(s) for tensors x and y using stddev.
The Laplacian kernel for vectors u, v is defined as follows:
K(u, v) = exp(-||u-v|| / stddev)
where the norm is the l1-norm. x, y can be either vectors or matrices. If they
are vectors, they must have the same dimension. If they are matrices, they
must have the same number of columns. In the latter case, the method returns
(as a matrix) K(u, v) values for all pairs (u, v) where u is a row from x and
v is a row from y.
Args:
x: a tensor of rank 1 or 2. It's shape should be either [dim] or [m, dim].
y: a tensor of rank 1 or 2. It's shape should be either [dim] or [n, dim].
stddev: The width of the Gaussian kernel.
Returns:
A single value (scalar) with shape (1, 1) if x, y are vectors or a matrix
of shape (m, n) with entries K(u, v) (where K is the Laplacian kernel) for
all (u,v) pairs where u, v are rows from x and y respectively.
Raises:
InvalidShapeError: if the shapes of x, y are not compatible.
"""
x_aligned, y_aligned = _align_matrices(x, y)
diff_l1_norm = math_ops.reduce_sum(
math_ops.abs(math_ops.subtract(x_aligned, y_aligned)), 2)
return math_ops.exp(-diff_l1_norm / stddev)
开发者ID:rmlarsen,项目名称:tensorflow,代码行数:28,代码来源:kernelized_utils.py
示例19: _prob
def _prob(self, y):
x, ildj = self.bijector.inverse_and_inverse_log_det_jacobian(y)
x = self._maybe_rotate_dims(x, rotate_right=True)
prob = self.distribution.prob(x)
if self._is_maybe_event_override:
prob = math_ops.reduce_prod(prob, self._reduce_event_indices)
return math_ops.exp(ildj) * prob
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:7,代码来源:transformed_distribution.py
示例20: _prob
def _prob(self, x):
y = (x - self.mu) / self.sigma
half_df = 0.5 * self.df
return (math_ops.exp(math_ops.lgamma(0.5 + half_df) -
math_ops.lgamma(half_df)) /
(math_ops.sqrt(self.df) * math.sqrt(math.pi) * self.sigma) *
math_ops.pow(1. + math_ops.square(y) / self.df, -(0.5 + half_df)))
开发者ID:moolighty,项目名称:tensorflow,代码行数:7,代码来源:student_t.py
注:本文中的tensorflow.python.ops.math_ops.exp函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论