本文整理汇总了Python中tensorflow.python.ops.math_ops.equal函数的典型用法代码示例。如果您正苦于以下问题:Python equal函数的具体用法?Python equal怎么用?Python equal使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了equal函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: rot90
def rot90(image, k=1, name=None):
"""Rotate an image counter-clockwise by 90 degrees.
Args:
image: A 3-D tensor of shape `[height, width, channels]`.
k: A scalar integer. The number of times the image is rotated by 90 degrees.
name: A name for this operation (optional).
Returns:
A rotated 3-D tensor of the same type and shape as `image`.
"""
with ops.name_scope(name, 'rot90', [image, k]) as scope:
image = ops.convert_to_tensor(image, name='image')
_Check3DImage(image, require_static=False)
k = ops.convert_to_tensor(k, dtype=dtypes.int32, name='k')
k.get_shape().assert_has_rank(0)
k = math_ops.mod(k, 4)
def _rot90():
return array_ops.transpose(array_ops.reverse_v2(image, [1]),
[1, 0, 2])
def _rot180():
return array_ops.reverse_v2(image, [0, 1])
def _rot270():
return array_ops.reverse_v2(array_ops.transpose(image, [1, 0, 2]),
[1])
cases = [(math_ops.equal(k, 1), _rot90),
(math_ops.equal(k, 2), _rot180),
(math_ops.equal(k, 3), _rot270)]
ret = control_flow_ops.case(cases, default=lambda: image, exclusive=True,
name=scope)
ret.set_shape([None, None, image.get_shape()[2]])
return ret
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:34,代码来源:image_ops_impl.py
示例2: map_and_filter_functions
def map_and_filter_functions():
identity = lambda x: x
increment = lambda x: x + 1
minus_five = lambda x: x - 5
def increment_and_square(x):
y = x + 1
return y * y
take_all = lambda x: constant_op.constant(True)
is_zero = lambda x: math_ops.equal(x, 0)
is_odd = lambda x: math_ops.equal(x % 2, 0)
greater = lambda x: math_ops.greater(x + 5, 0)
functions = [identity, increment, minus_five, increment_and_square]
filters = [take_all, is_zero, is_odd, greater]
tests = []
for x, fun in enumerate(functions):
for y, predicate in enumerate(filters):
tests.append(("Mixed{}{}".format(x, y), fun, predicate))
# Multi output
tests.append(("Multi1", lambda x: (x, x),
lambda x, y: constant_op.constant(True)))
tests.append(
("Multi2", lambda x: (x, 2),
lambda x, y: math_ops.equal(x * math_ops.cast(y, dtypes.int64), 0)))
return tuple(tests)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:29,代码来源:map_and_filter_fusion_test.py
示例3: _safe_div
def _safe_div(numerator, denominator, name="value"):
"""Computes a safe divide which returns 0 if the denominator is zero.
Note that the function contains an additional conditional check that is
necessary for avoiding situations where the loss is zero causing NaNs to
creep into the gradient computation.
Args:
numerator: An arbitrary `Tensor`.
denominator: `Tensor` whose shape matches `numerator` and whose values are
assumed to be non-negative.
name: An optional name for the returned op.
Returns:
The element-wise value of the numerator divided by the denominator.
"""
if isinstance(denominator, float):
if math_ops.equal(denominator, 0.0):
return ops.convert_to_tensor(0.0, dtype=numerator.dtype)
return math_ops.div(numerator, denominator)
if context.in_eager_mode() and denominator._rank() == 0: # pylint: disable=protected-access
if math_ops.equal(denominator, 0.0):
return ops.convert_to_tensor(0.0, dtype=numerator.dtype)
return math_ops.div(numerator, denominator)
return array_ops.where(
math_ops.greater(denominator, 0),
math_ops.div(numerator, array_ops.where(
math_ops.equal(denominator, 0),
array_ops.ones_like(denominator), denominator)),
array_ops.zeros_like(numerator),
name=name)
开发者ID:smajida,项目名称:tensorflow,代码行数:31,代码来源:losses_impl.py
示例4: _broadcast_uniform_partitioned_dimension
def _broadcast_uniform_partitioned_dimension(self, axis, lengths):
"""Broadcasts the partitioned dimension `axis` to match `lengths`."""
axis_dim_size = self.dimension_size(axis)
partitioned_sizes = list(self._partitioned_dim_sizes[:axis])
if lengths.shape.ndims == 0:
lengths = array_ops.where(
math_ops.equal(axis_dim_size, 1), lengths, axis_dim_size)
repeats = array_ops.where(math_ops.equal(axis_dim_size, 1), lengths, 1)
splits = array_ops.stack([0, self.num_slices_in_dimension(axis)])
else:
splits = math_ops.range(
array_ops.size(lengths, out_type=self.dim_size_dtype) + 1)
repeats = lengths
partitioned_sizes.append(lengths)
for dim_size in self._partitioned_dim_sizes[axis + 1:]:
if dim_size.shape.ndims == 0:
partitioned_sizes.append(dim_size)
splits *= dim_size
else:
partitioned_sizes.append(
ragged_util.repeat_ranges(dim_size, splits, repeats))
splits = array_ops.gather(
ragged_util.lengths_to_splits(dim_size), splits)
inner_sizes = self._inner_dim_sizes
return RaggedTensorDynamicShape(partitioned_sizes, inner_sizes)
开发者ID:aritratony,项目名称:tensorflow,代码行数:28,代码来源:ragged_tensor_shape.py
示例5: _process_labels
def _process_labels(self, labels):
if labels is None:
raise ValueError(
'You must provide a labels Tensor. Given: None. '
'Suggested troubleshooting steps: Check that your data contain '
'your label feature. Check that your input_fn properly parses and '
'returns labels.')
if isinstance(labels, sparse_tensor.SparseTensor):
if labels.dtype == dtypes.string:
label_ids_values = lookup_ops.index_table_from_tensor(
vocabulary_list=tuple(self._label_vocabulary),
name='class_id_lookup').lookup(labels.values)
label_ids = sparse_tensor.SparseTensor(
indices=labels.indices,
values=label_ids_values,
dense_shape=labels.dense_shape)
else:
label_ids = labels
return math_ops.to_int64(
sparse_ops.sparse_to_indicator(label_ids, self._n_classes))
msg = ('labels shape must be [batch_size, {}]. '
'Given: ').format(self._n_classes)
labels_shape = array_ops.shape(labels)
check_rank_op = control_flow_ops.Assert(
math_ops.equal(array_ops.rank(labels), 2),
data=[msg, labels_shape])
check_label_dim = control_flow_ops.Assert(
math_ops.equal(labels_shape[-1], self._n_classes),
data=[msg, labels_shape])
with ops.control_dependencies([check_rank_op, check_label_dim]):
return array_ops.identity(labels)
开发者ID:alexsax,项目名称:tensorflow,代码行数:31,代码来源:head.py
示例6: _decode
def _decode(self, image_buffer, image_format):
"""Decodes the image buffer.
Args:
image_buffer: The tensor representing the encoded image tensor.
image_format: The image format for the image in `image_buffer`. If image
format is `raw`, all images are expected to be in this format, otherwise
this op can decode a mix of `jpg` and `png` formats.
Returns:
A tensor that represents decoded image of self._shape, or
(?, ?, self._channels) if self._shape is not specified.
"""
def decode_image():
"""Decodes a png or jpg based on the headers."""
return image_ops.decode_image(image_buffer, self._channels)
def decode_raw():
"""Decodes a raw image."""
return parsing_ops.decode_raw(image_buffer, out_type=self._dtype)
pred_fn_pairs = {
math_ops.logical_or(
math_ops.equal(image_format, 'raw'),
math_ops.equal(image_format, 'RAW')): decode_raw,
}
image = control_flow_ops.case(
pred_fn_pairs, default=decode_image, exclusive=True)
image.set_shape([None, None, self._channels])
if self._shape is not None:
image = array_ops.reshape(image, self._shape)
return image
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:34,代码来源:tfexample_decoder.py
示例7: _check_labels_and_scores
def _check_labels_and_scores(boolean_labels, scores, check_shape):
"""Check the rank of labels/scores, return tensor versions."""
with ops.op_scope([boolean_labels, scores], '_check_labels_and_scores'):
boolean_labels = ops.convert_to_tensor(boolean_labels,
name='boolean_labels')
scores = ops.convert_to_tensor(scores, name='scores')
if boolean_labels.dtype != dtypes.bool:
raise ValueError(
'Argument boolean_labels should have dtype bool. Found: %s',
boolean_labels.dtype)
if check_shape:
labels_rank_1 = logging_ops.Assert(
math_ops.equal(1, array_ops.rank(boolean_labels)),
['Argument boolean_labels should have rank 1. Found: ',
boolean_labels.name, array_ops.shape(boolean_labels)])
scores_rank_1 = logging_ops.Assert(
math_ops.equal(1, array_ops.rank(scores)),
['Argument scores should have rank 1. Found: ', scores.name,
array_ops.shape(scores)])
with ops.control_dependencies([labels_rank_1, scores_rank_1]):
return boolean_labels, scores
else:
return boolean_labels, scores
开发者ID:285219011,项目名称:hello-world,代码行数:27,代码来源:histogram_ops.py
示例8: _decode
def _decode(self, image_buffer, image_format):
"""Decodes the image buffer.
Args:
image_buffer: T tensor representing the encoded image tensor.
image_format: The image format for the image in `image_buffer`.
Returns:
A decoder image.
"""
def decode_png():
return image_ops.decode_png(image_buffer, self._channels)
def decode_raw():
return parsing_ops.decode_raw(image_buffer, dtypes.uint8)
def decode_jpg():
return image_ops.decode_jpeg(image_buffer, self._channels)
image = control_flow_ops.case({
math_ops.logical_or(math_ops.equal(image_format, 'png'),
math_ops.equal(image_format, 'PNG')): decode_png,
math_ops.logical_or(math_ops.equal(image_format, 'raw'),
math_ops.equal(image_format, 'RAW')): decode_raw,
}, default=decode_jpg, exclusive=True)
image.set_shape([None, None, self._channels])
if self._shape is not None:
image = array_ops.reshape(image, self._shape)
return image
开发者ID:821760408-sp,项目名称:tensorflow,代码行数:29,代码来源:tfexample_decoder.py
示例9: _compute_zeroone_score
def _compute_zeroone_score(labels, predictions):
zeroone_score = math_ops.to_float(
math_ops.equal(
math_ops.reduce_sum(
math_ops.to_int32(math_ops.equal(labels, predictions))),
array_ops.shape(labels)[0]))
return zeroone_score
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:7,代码来源:metric_loss_ops.py
示例10: get_seed
def get_seed(seed):
"""Returns the local seeds an operation should use given an op-specific seed.
See `tf.compat.v1.get_seed` for more details. This wrapper adds support for
the case
where `seed` may be a tensor.
Args:
seed: An integer or a `tf.int64` scalar tensor.
Returns:
A tuple of two `tf.int64` scalar tensors that should be used for the local
seed of the calling dataset.
"""
seed, seed2 = random_seed.get_seed(seed)
if seed is None:
seed = constant_op.constant(0, dtype=dtypes.int64, name="seed")
else:
seed = ops.convert_to_tensor(seed, dtype=dtypes.int64, name="seed")
if seed2 is None:
seed2 = constant_op.constant(0, dtype=dtypes.int64, name="seed2")
else:
with ops.name_scope("seed2") as scope:
seed2 = ops.convert_to_tensor(seed2, dtype=dtypes.int64)
seed2 = array_ops.where(
math_ops.logical_and(
math_ops.equal(seed, 0), math_ops.equal(seed2, 0)),
constant_op.constant(2**31 - 1, dtype=dtypes.int64),
seed2,
name=scope)
return seed, seed2
开发者ID:aritratony,项目名称:tensorflow,代码行数:31,代码来源:random_seed.py
示例11: same_dynamic_shape
def same_dynamic_shape(a, b):
"""Returns whether a and b have the same dynamic shape.
Args:
a: `Tensor`
b: `Tensor`
Returns:
`Boolean` `Tensor` representing if both tensors have the same shape.
"""
a = ops.convert_to_tensor(a, name="a")
b = ops.convert_to_tensor(b, name="b")
# One of the shapes isn't fully defined, so we need to use the dynamic
# shape.
return control_flow_ops.cond(
math_ops.equal(array_ops.rank(a), array_ops.rank(b)),
# Here we can't just do math_ops.equal(a.shape, b.shape), since
# static shape inference may break the equality comparison between
# shape(a) and shape(b) in math_ops.equal.
lambda: math_ops.reduce_all(math_ops.equal(
array_ops.concat_v2((
array_ops.shape(a),
array_ops.shape(b)), 0),
array_ops.concat_v2((
array_ops.shape(b),
array_ops.shape(a)), 0))),
lambda: constant_op.constant(False))
开发者ID:kadeng,项目名称:tensorflow,代码行数:28,代码来源:distribution_util.py
示例12: filter_functions
def filter_functions():
take_all = lambda x: constant_op.constant(True)
is_zero = lambda x: math_ops.equal(x, 0)
greater = lambda x: math_ops.greater(x + 5, 0)
tests = []
filters = [take_all, is_zero, greater]
identity = lambda x: x
for x, predicate_1 in enumerate(filters):
for y, predicate_2 in enumerate(filters):
tests.append(("Mixed{}{}".format(x, y), identity,
[predicate_1, predicate_2]))
for z, predicate_3 in enumerate(filters):
tests.append(("Mixed{}{}{}".format(x, y, z), identity,
[predicate_1, predicate_2, predicate_3]))
take_all_multiple = lambda x, y: constant_op.constant(True)
# Multi output
tests.append(("Multi1", lambda x: (x, x),
[take_all_multiple, take_all_multiple]))
tests.append(("Multi2", lambda x: (x, 2), [
take_all_multiple,
lambda x, y: math_ops.equal(x * math_ops.cast(y, dtypes.int64), 0)
]))
return tuple(tests)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:25,代码来源:map_and_filter_fusion_test.py
示例13: _process_labels
def _process_labels(self, labels):
if isinstance(labels, sparse_tensor.SparseTensor):
if labels.dtype == dtypes.string:
label_ids_values = lookup_ops.index_table_from_tensor(
vocabulary_list=tuple(self._label_vocabulary),
name='class_id_lookup').lookup(labels.values)
label_ids = sparse_tensor.SparseTensor(
indices=labels.indices,
values=label_ids_values,
dense_shape=labels.dense_shape)
else:
label_ids = labels
return math_ops.to_int64(
sparse_ops.sparse_to_indicator(label_ids, self._n_classes))
msg = ('labels shape must be [batch_size, {}]. '
'Given: ').format(self._n_classes)
labels_shape = array_ops.shape(labels)
check_rank_op = control_flow_ops.Assert(
math_ops.equal(array_ops.rank(labels), 2),
data=[msg, labels_shape])
check_label_dim = control_flow_ops.Assert(
math_ops.equal(labels_shape[-1], self._n_classes),
data=[msg, labels_shape])
with ops.control_dependencies([check_rank_op, check_label_dim]):
return array_ops.identity(labels)
开发者ID:Crazyonxh,项目名称:tensorflow,代码行数:25,代码来源:head.py
示例14: _dynamic_rank_in
def _dynamic_rank_in(actual_rank, given_ranks):
if len(given_ranks) < 1:
return ops.convert_to_tensor(False)
result = math_ops.equal(given_ranks[0], actual_rank)
for given_rank in given_ranks[1:]:
result = math_ops.logical_or(
result, math_ops.equal(given_rank, actual_rank))
return result
开发者ID:Dr4KK,项目名称:tensorflow,代码行数:8,代码来源:check_ops.py
示例15: testCase_dict
def testCase_dict(self):
x = constant_op.constant(2)
conditions = {
math_ops.equal(x, 1): lambda: constant_op.constant(2),
math_ops.equal(x, 2): lambda: constant_op.constant(4)
}
output = control_flow_ops.case(conditions, exclusive=True)
self.assertEqual(4, self.evaluate(output))
开发者ID:bunbutter,项目名称:tensorflow,代码行数:8,代码来源:control_flow_ops_test.py
示例16: _compute_zeroone_score
def _compute_zeroone_score(labels, predictions):
zeroone_score = math_ops.cast(
math_ops.equal(
math_ops.reduce_sum(
math_ops.cast(math_ops.equal(labels, predictions), dtypes.int32)),
array_ops.shape(labels)[0]),
dtypes.float32)
return zeroone_score
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:8,代码来源:metric_loss_ops.py
示例17: remove_squeezable_dimensions
def remove_squeezable_dimensions(
labels, predictions, expected_rank_diff=0, name=None):
"""Squeeze last dim if ranks differ from expected by exactly 1.
In the common case where we expect shapes to match, `expected_rank_diff`
defaults to 0, and we squeeze the last dimension of the larger rank if they
differ by 1.
But, for example, if `labels` contains class IDs and `predictions` contains 1
probability per class, we expect `predictions` to have 1 more dimension than
`labels`, so `expected_rank_diff` would be 1. In this case, we'd squeeze
`labels` if `rank(predictions) - rank(labels) == 0`, and
`predictions` if `rank(predictions) - rank(labels) == 2`.
This will use static shape if available. Otherwise, it will add graph
operations, which could result in a performance hit.
Args:
labels: Label values, a `Tensor` whose dimensions match `predictions`.
predictions: Predicted values, a `Tensor` of arbitrary dimensions.
expected_rank_diff: Expected result of `rank(predictions) - rank(labels)`.
name: Name of the op.
Returns:
Tuple of `labels` and `predictions`, possibly with last dim squeezed.
"""
with ops.name_scope(name, 'remove_squeezable_dimensions',
[labels, predictions]):
predictions = ops.convert_to_tensor(predictions)
labels = ops.convert_to_tensor(labels)
predictions_shape = predictions.get_shape()
predictions_rank = predictions_shape.ndims
labels_shape = labels.get_shape()
labels_rank = labels_shape.ndims
if (labels_rank is not None) and (predictions_rank is not None):
# Use static rank.
rank_diff = predictions_rank - labels_rank
if rank_diff == expected_rank_diff + 1:
predictions = array_ops.squeeze(predictions, [-1])
elif rank_diff == expected_rank_diff - 1:
labels = array_ops.squeeze(labels, [-1])
return labels, predictions
# Use dynamic rank.
rank_diff = array_ops.rank(predictions) - array_ops.rank(labels)
if (predictions_rank is None) or (
predictions_shape.dims[-1].is_compatible_with(1)):
predictions = control_flow_ops.cond(
math_ops.equal(expected_rank_diff + 1, rank_diff),
lambda: array_ops.squeeze(predictions, [-1]),
lambda: predictions)
if (labels_rank is None) or (
labels_shape.dims[-1].is_compatible_with(1)):
labels = control_flow_ops.cond(
math_ops.equal(expected_rank_diff - 1, rank_diff),
lambda: array_ops.squeeze(labels, [-1]),
lambda: labels)
return labels, predictions
开发者ID:aritratony,项目名称:tensorflow,代码行数:58,代码来源:confusion_matrix.py
示例18: _loss_fn
def _loss_fn(labels, logits):
check_labels = control_flow_ops.Assert(
math_ops.reduce_all(math_ops.equal(labels, labels_input)),
data=[labels])
check_logits = control_flow_ops.Assert(
math_ops.reduce_all(math_ops.equal(logits, logits_input)),
data=[logits])
with ops.control_dependencies([check_labels, check_logits]):
return constant_op.constant(loss)
开发者ID:andrewharp,项目名称:tensorflow,代码行数:9,代码来源:head_test.py
示例19: testCase_withDefault
def testCase_withDefault(self):
x = array_ops.placeholder(dtype=dtypes.int32, shape=[])
conditions = [(math_ops.equal(x, 1), lambda: constant_op.constant(2)),
(math_ops.equal(x, 2), lambda: constant_op.constant(4))]
default = lambda: constant_op.constant(6)
output = control_flow_ops.case(conditions, default, exclusive=True)
with self.test_session() as sess:
self.assertEqual(sess.run(output, feed_dict={x: 1}), 2)
self.assertEqual(sess.run(output, feed_dict={x: 2}), 4)
self.assertEqual(sess.run(output, feed_dict={x: 3}), 6)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:10,代码来源:control_flow_ops_test.py
示例20: _decode
def _decode(self, image_buffer, image_format):
"""Decodes the image buffer.
Args:
image_buffer: The tensor representing the encoded image tensor.
image_format: The image format for the image in `image_buffer`. If image
format is `raw`, all images are expected to be in this format, otherwise
this op can decode a mix of `jpg` and `png` formats.
Returns:
A tensor that represents decoded image of self._shape, or
(?, ?, self._channels) if self._shape is not specified.
"""
def decode_image():
"""Decodes a image based on the headers."""
return math_ops.cast(
image_ops.decode_image(image_buffer, channels=self._channels),
self._dtype)
def decode_jpeg():
"""Decodes a jpeg image with specified '_dct_method'."""
return math_ops.cast(
image_ops.decode_jpeg(
image_buffer,
channels=self._channels,
dct_method=self._dct_method), self._dtype)
def check_jpeg():
"""Checks if an image is jpeg."""
# For jpeg, we directly use image_ops.decode_jpeg rather than decode_image
# in order to feed the jpeg specify parameter 'dct_method'.
return control_flow_ops.cond(
image_ops.is_jpeg(image_buffer),
decode_jpeg,
decode_image,
name='cond_jpeg')
def decode_raw():
"""Decodes a raw image."""
return parsing_ops.decode_raw(image_buffer, out_type=self._dtype)
pred_fn_pairs = {
math_ops.logical_or(
math_ops.equal(image_format, 'raw'),
math_ops.equal(image_format, 'RAW')): decode_raw,
}
image = control_flow_ops.case(
pred_fn_pairs, default=check_jpeg, exclusive=True)
image.set_shape([None, None, self._channels])
if self._shape is not None:
image = array_ops.reshape(image, self._shape)
return image
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:55,代码来源:tfexample_decoder.py
注:本文中的tensorflow.python.ops.math_ops.equal函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论