• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python linalg_ops.self_adjoint_eig函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.ops.linalg_ops.self_adjoint_eig函数的典型用法代码示例。如果您正苦于以下问题:Python self_adjoint_eig函数的具体用法?Python self_adjoint_eig怎么用?Python self_adjoint_eig使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了self_adjoint_eig函数的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: testWrongDimensions

 def testWrongDimensions(self):
   # The input to self_adjoint_eig should be a tensor of
   # at least rank 2.
   scalar = constant_op.constant(1.)
   with self.assertRaises(ValueError):
     linalg_ops.self_adjoint_eig(scalar)
   vector = constant_op.constant([1., 2.])
   with self.assertRaises(ValueError):
     linalg_ops.self_adjoint_eig(vector)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:9,代码来源:self_adjoint_eig_op_test.py


示例2: Test

  def Test(self):
    np.random.seed(1)
    n = shape_[-1]
    batch_shape = shape_[:-2]
    np_dtype = dtype_.as_numpy_dtype
    a = np.random.uniform(
        low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
    if dtype_.is_complex:
      a += 1j * np.random.uniform(
          low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
    a += np.conj(a.T)
    a = np.tile(a, batch_shape + (1, 1))
    if dtype_ in (dtypes_lib.float32, dtypes_lib.complex64):
      atol = 1e-4
    else:
      atol = 1e-12
    np_e, np_v = np.linalg.eigh(a)
    with self.test_session():
      if compute_v_:
        tf_e, tf_v = linalg_ops.self_adjoint_eig(constant_op.constant(a))

        # Check that V*diag(E)*V^T is close to A.
        a_ev = math_ops.matmul(
            math_ops.matmul(tf_v, array_ops.matrix_diag(tf_e)),
            tf_v,
            adjoint_b=True)
        self.assertAllClose(a_ev.eval(), a, atol=atol)

        # Compare to numpy.linalg.eigh.
        CompareEigenDecompositions(self, np_e, np_v,
                                   tf_e.eval(), tf_v.eval(), atol)
      else:
        tf_e = linalg_ops.self_adjoint_eigvals(constant_op.constant(a))
        self.assertAllClose(
            np.sort(np_e, -1), np.sort(tf_e.eval(), -1), atol=atol)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:35,代码来源:self_adjoint_eig_op_test.py


示例3: Test

 def Test(self):
   np.random.seed(1)
   n = shape_[-1]
   batch_shape = shape_[:-2]
   a = np.random.uniform(
       low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(dtype_)
   a += np.conj(a.T)
   a = np.tile(a, batch_shape + (1, 1))
   # Optimal stepsize for central difference is O(epsilon^{1/3}).
   epsilon = np.finfo(dtype_).eps
   delta = 0.1 * epsilon**(1.0 / 3.0)
   # tolerance obtained by looking at actual differences using
   # np.linalg.norm(theoretical-numerical, np.inf) on -mavx build
   if dtype_ == np.float32:
     tol = 1e-2
   else:
     tol = 1e-7
   with self.test_session():
     tf_a = constant_op.constant(a)
     tf_e, tf_v = linalg_ops.self_adjoint_eig(tf_a)
     for b in tf_e, tf_v:
       x_init = np.random.uniform(
           low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(dtype_)
       x_init += np.conj(x_init.T)
       x_init = np.tile(x_init, batch_shape + (1, 1))
       theoretical, numerical = gradient_checker.compute_gradient(
           tf_a,
           tf_a.get_shape().as_list(),
           b,
           b.get_shape().as_list(),
           x_init_value=x_init,
           delta=delta)
       self.assertAllClose(theoretical, numerical, atol=tol, rtol=tol)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:33,代码来源:self_adjoint_eig_op_test.py


示例4: Test

 def Test(self):
   np.random.seed(1)
   n = shape_[-1]
   batch_shape = shape_[:-2]
   np_dtype = dtype_.as_numpy_dtype
   a = np.random.uniform(
       low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
   if dtype_.is_complex:
     a += 1j * np.random.uniform(
         low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
   a += np.conj(a.T)
   a = np.tile(a, batch_shape + (1, 1))
   # Optimal stepsize for central difference is O(epsilon^{1/3}).
   epsilon = np.finfo(np_dtype).eps
   delta = 0.1 * epsilon**(1.0 / 3.0)
   # tolerance obtained by looking at actual differences using
   # np.linalg.norm(theoretical-numerical, np.inf) on -mavx build
   if dtype_ in (dtypes_lib.float32, dtypes_lib.complex64):
     tol = 1e-2
   else:
     tol = 1e-7
   with self.session(use_gpu=True):
     tf_a = constant_op.constant(a)
     if compute_v_:
       tf_e, tf_v = linalg_ops.self_adjoint_eig(tf_a)
       # (complex) Eigenvectors are only unique up to an arbitrary phase
       # We normalize the vectors such that the first component has phase 0.
       top_rows = tf_v[..., 0:1, :]
       if tf_a.dtype.is_complex:
         angle = -math_ops.angle(top_rows)
         phase = math_ops.complex(math_ops.cos(angle), math_ops.sin(angle))
       else:
         phase = math_ops.sign(top_rows)
       tf_v *= phase
       outputs = [tf_e, tf_v]
     else:
       tf_e = linalg_ops.self_adjoint_eigvals(tf_a)
       outputs = [tf_e]
     for b in outputs:
       x_init = np.random.uniform(
           low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
       if dtype_.is_complex:
         x_init += 1j * np.random.uniform(
             low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
       x_init += np.conj(x_init.T)
       x_init = np.tile(x_init, batch_shape + (1, 1))
       theoretical, numerical = gradient_checker.compute_gradient(
           tf_a,
           tf_a.get_shape().as_list(),
           b,
           b.get_shape().as_list(),
           x_init_value=x_init,
           delta=delta)
       self.assertAllClose(theoretical, numerical, atol=tol, rtol=tol)
开发者ID:bunbutter,项目名称:tensorflow,代码行数:54,代码来源:self_adjoint_eig_op_test.py


示例5: testConcurrentExecutesWithoutError

 def testConcurrentExecutesWithoutError(self):
   all_ops = []
   with self.session(use_gpu=True) as sess:
     for compute_v_ in True, False:
       matrix1 = random_ops.random_normal([5, 5], seed=42)
       matrix2 = random_ops.random_normal([5, 5], seed=42)
       if compute_v_:
         e1, v1 = linalg_ops.self_adjoint_eig(matrix1)
         e2, v2 = linalg_ops.self_adjoint_eig(matrix2)
         all_ops += [e1, v1, e2, v2]
       else:
         e1 = linalg_ops.self_adjoint_eigvals(matrix1)
         e2 = linalg_ops.self_adjoint_eigvals(matrix2)
         all_ops += [e1, e2]
     val = sess.run(all_ops)
     self.assertAllEqual(val[0], val[2])
     # The algorithm is slightly different for compute_v being True and False,
     # so require approximate equality only here.
     self.assertAllClose(val[2], val[4])
     self.assertAllEqual(val[4], val[5])
     self.assertAllEqual(val[1], val[3])
开发者ID:bunbutter,项目名称:tensorflow,代码行数:21,代码来源:self_adjoint_eig_op_test.py


示例6: Compute

 def Compute(x):
   e, v = linalg_ops.self_adjoint_eig(x)
   # (complex) Eigenvectors are only unique up to an arbitrary phase
   # We normalize the vectors such that the first component has phase 0.
   top_rows = v[..., 0:1, :]
   if dtype_.is_complex:
     angle = -math_ops.angle(top_rows)
     phase = math_ops.complex(math_ops.cos(angle), math_ops.sin(angle))
   else:
     phase = math_ops.sign(top_rows)
   v *= phase
   return e, v
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:12,代码来源:self_adjoint_eig_op_test.py


示例7: testMatrixThatFailsWhenFlushingDenormsToZero

 def testMatrixThatFailsWhenFlushingDenormsToZero(self):
   # Test a 32x32 matrix which is known to fail if denorm floats are flushed to
   # zero.
   matrix = np.genfromtxt(
       test.test_src_dir_path(
           "python/kernel_tests/testdata/"
           "self_adjoint_eig_fail_if_denorms_flushed.txt")).astype(np.float32)
   self.assertEqual(matrix.shape, (32, 32))
   matrix_tensor = constant_op.constant(matrix)
   with self.session(use_gpu=True) as sess:
     (e, v) = sess.run(linalg_ops.self_adjoint_eig(matrix_tensor))
     self.assertEqual(e.size, 32)
     self.assertAllClose(
         np.matmul(v, v.transpose()), np.eye(32, dtype=np.float32), atol=2e-3)
     self.assertAllClose(matrix,
                         np.matmul(np.matmul(v, np.diag(e)), v.transpose()))
开发者ID:bunbutter,项目名称:tensorflow,代码行数:16,代码来源:self_adjoint_eig_op_test.py


示例8: get_eigendecomp

  def get_eigendecomp(self):
    """Creates or retrieves eigendecomposition of self._cov."""
    # Unlike get_inverse and get_matpower this doesn't retrieve a stored
    # variable, but instead always computes a fresh version from the current
    # value of get_cov().
    if not self._eigendecomp:
      eigenvalues, eigenvectors = linalg_ops.self_adjoint_eig(self._cov)

      # The matrix self._cov is positive semidefinite by construction, but the
      # numerical eigenvalues could be negative due to numerical errors, so here
      # we clip them to be at least FLAGS.eigenvalue_clipping_threshold
      clipped_eigenvalues = math_ops.maximum(eigenvalues,
                                             EIGENVALUE_CLIPPING_THRESHOLD)
      self._eigendecomp = (clipped_eigenvalues, eigenvectors)

    return self._eigendecomp
开发者ID:andrewharp,项目名称:tensorflow,代码行数:16,代码来源:fisher_factors.py


示例9: _test

  def _test(self, dtype, shape):
    np.random.seed(1)
    x_np = np.random.uniform(
        low=-1.0, high=1.0, size=np.prod(shape)).reshape(shape).astype(dtype)
    x_np = x_np + np.swapaxes(x_np, -1, -2)
    n = shape[-1]

    e_np, _ = np.linalg.eigh(x_np)
    with self.cached_session() as sess:
      x_tf = array_ops.placeholder(dtype)
      with self.test_scope():
        e, v = linalg_ops.self_adjoint_eig(x_tf)
      e_val, v_val = sess.run([e, v], feed_dict={x_tf: x_np})

      v_diff = np.matmul(v_val, np.swapaxes(v_val, -1, -2)) - np.eye(n)
      self.assertAlmostEqual(np.mean(v_diff**2), 0.0, delta=1e-6)
      self.assertAlmostEqual(np.mean((e_val - e_np)**2), 0.0, delta=1e-6)
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:17,代码来源:self_adjoint_eig_op_test.py


示例10: register_eigendecomp

  def register_eigendecomp(self):
    """Registers an eigendecomposition.

    Unlike register_damp_inverse and register_matpower this doesn't create
    any variables or inverse ops.  Instead it merely makes tensors containing
    the eigendecomposition available to anyone that wants them.  They will be
    recomputed (once) for each session.run() call (when they needed by some op).
    """
    if not self._eigendecomp:
      eigenvalues, eigenvectors = linalg_ops.self_adjoint_eig(self._cov)

      # The matrix self._cov is positive semidefinite by construction, but the
      # numerical eigenvalues could be negative due to numerical errors, so here
      # we clip them to be at least FLAGS.eigenvalue_clipping_threshold
      clipped_eigenvalues = math_ops.maximum(eigenvalues,
                                             EIGENVALUE_CLIPPING_THRESHOLD)
      self._eigendecomp = (clipped_eigenvalues, eigenvectors)
开发者ID:Lin-jipeng,项目名称:tensorflow,代码行数:17,代码来源:fisher_factors.py


示例11: _SelfAdjointEigV2Grad

def _SelfAdjointEigV2Grad(op, grad_e, grad_v):
  """Gradient for SelfAdjointEigV2."""
  e = op.outputs[0]
  compute_v = op.get_attr("compute_v")
  # a = op.inputs[0], which satisfies
  # a[...,:,:] * v[...,:,i] = e[...,i] * v[...,i]
  with ops.control_dependencies([grad_e, grad_v]):
    if compute_v:
      v = op.outputs[1]
      # Construct the matrix f(i,j) = (i != j ? 1 / (e_i - e_j) : 0).
      # Notice that because of the term involving f, the gradient becomes
      # infinite (or NaN in practice) when eigenvalues are not unique.
      # Mathematically this should not be surprising, since for (k-fold)
      # degenerate eigenvalues, the corresponding eigenvectors are only defined
      # up to arbitrary rotation in a (k-dimensional) subspace.
      f = array_ops.matrix_set_diag(
          math_ops.reciprocal(
              array_ops.expand_dims(e, -2) - array_ops.expand_dims(e, -1)),
          array_ops.zeros_like(e))
      grad_a = math_ops.matmul(
          v,
          math_ops.matmul(
              array_ops.matrix_diag(grad_e) +
              f * math_ops.matmul(v, grad_v, adjoint_a=True),
              v,
              adjoint_b=True))
    else:
      _, v = linalg_ops.self_adjoint_eig(op.inputs[0])
      grad_a = math_ops.matmul(v,
                               math_ops.matmul(
                                   array_ops.matrix_diag(grad_e),
                                   v,
                                   adjoint_b=True))
    # The forward op only depends on the lower triangular part of a, so here we
    # symmetrize and take the lower triangle
    grad_a = array_ops.matrix_band_part(
        grad_a + math_ops.conj(array_ops.matrix_transpose(grad_a)), -1, 0)
    grad_a = array_ops.matrix_set_diag(grad_a,
                                       0.5 * array_ops.matrix_diag_part(grad_a))
    return grad_a
开发者ID:1000sprites,项目名称:tensorflow,代码行数:40,代码来源:linalg_grad.py


示例12: register_eigendecomp

 def register_eigendecomp(self):
   """Registers that an eigendecomposition is needed by a FisherBlock."""
   if not self._eigendecomp:
     self._eigendecomp = linalg_ops.self_adjoint_eig(self._cov)
开发者ID:alexsax,项目名称:tensorflow,代码行数:4,代码来源:fisher_factors.py


示例13: posdef_inv_eig

def posdef_inv_eig(tensor, identity, damping):
  """Computes inverse(tensor + damping * identity) with eigendecomposition."""
  eigenvalues, eigenvectors = linalg_ops.self_adjoint_eig(
      tensor + damping * identity)
  return math_ops.matmul(
      eigenvectors / eigenvalues, eigenvectors, transpose_b=True)
开发者ID:abidrahmank,项目名称:tensorflow,代码行数:6,代码来源:utils.py


示例14: posdef_eig_self_adjoint

def posdef_eig_self_adjoint(mat):
  """Computes eigendecomposition using self_adjoint_eig."""
  evals, evecs = linalg_ops.self_adjoint_eig(mat)
  evals = math_ops.abs(evals)  # Should be equivalent to svd approach.

  return evals, evecs
开发者ID:DILASSS,项目名称:tensorflow,代码行数:6,代码来源:utils.py



注:本文中的tensorflow.python.ops.linalg_ops.self_adjoint_eig函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python linalg_ops.svd函数代码示例发布时间:2022-05-27
下一篇:
Python linalg_ops.norm函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap