本文整理汇总了Python中tensorflow.python.ops.linalg_ops.norm函数的典型用法代码示例。如果您正苦于以下问题:Python norm函数的具体用法?Python norm怎么用?Python norm使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了norm函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testShapesValues
def testShapesValues(self):
gain = 3.14
for dtype in [dtypes.float32]:
for kernel_size in [[3], [8], [3, 5], [2, 4], [3, 3, 3], [2, 2, 2]]:
tol = 1e-2
# Check orthogonality by computing ratio between
# the 2-norms of the inputs and outputs.
if len(kernel_size) == 1:
shape = [4, 32, 64]
convolution = convolutional.conv1d
elif len(kernel_size) == 2:
convolution = convolutional.conv2d
shape = [4, 32, 32, 64]
else:
shape = [4, 16, 16, 16, 64]
convolution = convolutional.conv3d
inputs = random_ops.random_normal(shape, dtype=dtype)
inputs_2norm = linalg_ops.norm(inputs)
outputs = convolution(
inputs, padding="same", filters=128,
kernel_size=kernel_size, use_bias=False,
kernel_initializer=init_ops.convolutional_delta_orthogonal(
gain=gain))
outputs_shape = shape[0:-1] + [128]
outputs_2norm = linalg_ops.norm(outputs)
ratio = outputs_2norm / inputs_2norm
my_ops = variables.global_variables_initializer()
with self.test_session(use_gpu=True) as sess:
sess.run(my_ops)
# Check the shape of the outputs
t = outputs.eval()
self.assertAllEqual(t.shape, outputs_shape)
# Check isometry of the delta-orthogonal kernel.
self.assertAllClose(sess.run(ratio), np.sqrt(gain),
rtol=tol, atol=tol)
开发者ID:HughKu,项目名称:tensorflow,代码行数:35,代码来源:init_ops_test.py
示例2: testInvalidAxis
def testInvalidAxis(self):
matrix = [[0., 1.], [2., 3.]]
for axis_ in [], [1, 2, 3], [[1]], [[1], [2]], [3.1415], [1, 1]:
error_prefix = ("'axis' must be None, an integer, or a tuple of 2 unique "
"integers")
with self.assertRaisesRegexp(ValueError, error_prefix):
linalg_ops.norm(matrix, axis=axis_)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:7,代码来源:norm_op_test.py
示例3: _CompareNorm
def _CompareNorm(self, matrix):
np_norm = np.linalg.norm(matrix, ord=ord_, axis=axis_, keepdims=keep_dims_)
with self.cached_session(use_gpu=True) as sess:
if use_static_shape_:
tf_matrix = constant_op.constant(matrix)
tf_norm = linalg_ops.norm(
tf_matrix, ord=ord_, axis=axis_, keepdims=keep_dims_)
tf_norm_val = self.evaluate(tf_norm)
else:
tf_matrix = array_ops.placeholder(dtype_)
tf_norm = linalg_ops.norm(
tf_matrix, ord=ord_, axis=axis_, keepdims=keep_dims_)
tf_norm_val = sess.run(tf_norm, feed_dict={tf_matrix: matrix})
self.assertAllClose(np_norm, tf_norm_val, rtol=1e-5, atol=1e-5)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:14,代码来源:norm_op_test.py
示例4: compute_lr
def compute_lr(self, grad, var):
scaled_lr = self._learning_rate
if self._skip_list is None or not any(v in var.name
for v in self._skip_list):
w_norm = linalg_ops.norm(var, ord=2)
g_norm = linalg_ops.norm(grad, ord=2)
trust_ratio = array_ops.where(
math_ops.greater(w_norm, 0),
array_ops.where(
math_ops.greater(g_norm, 0),
(self._eeta * w_norm /
(g_norm + self._weight_decay * w_norm + self._epsilon)), 1.0),
1.0)
scaled_lr = self._learning_rate * trust_ratio
return scaled_lr
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:15,代码来源:lars_optimizer.py
示例5: testTransform
def testTransform(self):
# This tests all combinations of:
# - ids rank 0, 1, >1
# - params sharded/unsharded
# It always applies max_norm.
np.random.seed(8)
l2_norm = 2.
with self.test_session():
# Param values are in [l2_norm, l2_norm+1) so it will always clip.
params = np.random.rand(6, 3) + l2_norm
params_norm = l2_norm * params / np.sqrt(
np.sum(params * params, axis=1, keepdims=True))
# Compute the norm of each embedding. This will change the embedding
# rank to 0.
params_norm = np.linalg.norm(params_norm, axis=1)
transform = lambda x: linalg_ops.norm(x, axis=1)
for ids_shape in (), (3), (4, 3), (2, 3, 4):
# Test ids rank 0, 1, 2, 3.
ids = np.random.randint(
params.shape[0], size=np.prod(ids_shape,
dtype=np.int64)).reshape(ids_shape)
# Compare nonsharded to gather.
simple = embedding_ops._embedding_lookup_and_transform(
params, ids, max_norm=l2_norm, transform_fn=transform).eval()
self.assertAllClose(simple, array_ops.gather(params_norm, ids).eval())
# Run a few different sharded versions.
for procs in 1, 2, 3:
stride = procs * math_ops.range(params.shape[0] // procs)
split_params = [
array_ops.gather(params, stride + p) for p in xrange(procs)
]
sharded = embedding_ops._embedding_lookup_and_transform(
split_params, ids, max_norm=l2_norm,
transform_fn=transform).eval()
self.assertAllEqual(simple, sharded)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:35,代码来源:embedding_ops_test.py
示例6: body
def body(i, prev_c, prev_h, actions, log_probs):
# pylint: disable=g-long-lambda
signal = control_flow_ops.cond(
math_ops.equal(i, 0),
lambda: array_ops.tile(device_go_embedding,
[self.hparams.num_children, 1]),
lambda: embedding_ops.embedding_lookup(device_embeddings,
actions.read(i - 1))
)
if self.hparams.keep_prob is not None:
signal = nn_ops.dropout(signal, self.hparams.keep_prob)
next_c, next_h = lstm(signal, prev_c, prev_h, w_lstm, forget_bias)
query = math_ops.matmul(next_h, attn_w_2)
query = array_ops.reshape(
query, [self.hparams.num_children, 1, self.hparams.hidden_size])
query = math_ops.tanh(query + attn_mem)
query = array_ops.reshape(query, [
self.hparams.num_children * self.num_groups, self.hparams.hidden_size
])
query = math_ops.matmul(query, attn_v)
query = array_ops.reshape(query,
[self.hparams.num_children, self.num_groups])
query = nn_ops.softmax(query)
query = array_ops.reshape(query,
[self.hparams.num_children, self.num_groups, 1])
query = math_ops.reduce_sum(attn_mem * query, axis=1)
query = array_ops.concat([next_h, query], axis=1)
logits = math_ops.matmul(query, device_softmax)
logits /= self.hparams.temperature
if self.hparams.tanh_constant > 0:
logits = math_ops.tanh(logits) * self.hparams.tanh_constant
if self.hparams.logits_std_noise > 0:
num_in_logits = math_ops.cast(
array_ops.size(logits), dtype=dtypes.float32)
avg_norm = math_ops.divide(
linalg_ops.norm(logits), math_ops.sqrt(num_in_logits))
logits_noise = random_ops.random_normal(
array_ops.shape(logits),
stddev=self.hparams.logits_std_noise * avg_norm)
logits = control_flow_ops.cond(
self.global_step > self.hparams.stop_noise_step, lambda: logits,
lambda: logits + logits_noise)
if mode == "sample":
next_y = random_ops.multinomial(logits, 1, seed=self.hparams.seed)
elif mode == "greedy":
next_y = math_ops.argmax(logits, 1)
elif mode == "target":
next_y = array_ops.slice(y, [0, i], [-1, 1])
else:
raise NotImplementedError
next_y = math_ops.to_int32(next_y)
next_y = array_ops.reshape(next_y, [self.hparams.num_children])
actions = actions.write(i, next_y)
log_probs += nn_ops.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=next_y)
return i + 1, next_c, next_h, actions, log_probs
开发者ID:neuroradiology,项目名称:tensorflow,代码行数:57,代码来源:hierarchical_controller.py
示例7: _verifySolve
def _verifySolve(self,
x,
y,
dtype,
use_placeholder,
fast,
l2_regularizer,
batch_shape=()):
if not fast and l2_regularizer != 0:
# The slow path does not support regularization.
return
maxdim = np.max(x.shape)
if dtype == np.float32 or dtype == np.complex64:
tol = maxdim * 5e-4
else:
tol = maxdim * 5e-7
a = x.astype(dtype)
b = y.astype(dtype)
if dtype in [np.complex64, np.complex128]:
a.imag = a.real
b.imag = b.real
# numpy.linalg.lstqr does not batching, so we just solve a single system
# and replicate the solution. and residual norm.
np_ans = _SolveWithNumpy(x, y, l2_regularizer=l2_regularizer)
np_r = np.dot(np.conj(a.T), b - np.dot(a, np_ans))
np_r_norm = np.sqrt(np.sum(np.conj(np_r) * np_r))
if batch_shape is not ():
a = np.tile(a, batch_shape + (1, 1))
b = np.tile(b, batch_shape + (1, 1))
np_ans = np.tile(np_ans, batch_shape + (1, 1))
np_r_norm = np.tile(np_r_norm, batch_shape)
with self.cached_session(use_gpu=fast) as sess:
if use_placeholder:
a_ph = array_ops.placeholder(dtypes.as_dtype(dtype))
b_ph = array_ops.placeholder(dtypes.as_dtype(dtype))
feed_dict = {a_ph: a, b_ph: b}
tf_ans = linalg_ops.matrix_solve_ls(
a_ph, b_ph, fast=fast, l2_regularizer=l2_regularizer)
else:
tf_ans = linalg_ops.matrix_solve_ls(
a, b, fast=fast, l2_regularizer=l2_regularizer)
feed_dict = {}
self.assertEqual(np_ans.shape, tf_ans.get_shape())
if l2_regularizer == 0:
# The least squares solution should satisfy A^H * (b - A*x) = 0.
tf_r = b - math_ops.matmul(a, tf_ans)
tf_r = math_ops.matmul(a, tf_r, adjoint_a=True)
tf_r_norm = linalg_ops.norm(tf_r, ord="fro", axis=[-2, -1])
tf_ans_val, tf_r_norm_val = sess.run(
[tf_ans, tf_r_norm], feed_dict=feed_dict)
self.assertAllClose(np_r_norm, tf_r_norm_val, atol=tol, rtol=tol)
else:
tf_ans_val = sess.run(tf_ans, feed_dict=feed_dict)
self.assertEqual(np_ans.shape, tf_ans_val.shape)
self.assertAllClose(np_ans, tf_ans_val, atol=2 * tol, rtol=2 * tol)
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:56,代码来源:matrix_solve_ls_op_test.py
示例8: mean_only_frechet_classifier_distance_from_activations
def mean_only_frechet_classifier_distance_from_activations(
real_activations, generated_activations):
"""Classifier distance for evaluating a generative model from activations.
Given two Gaussian distribution with means m and m_w and covariance matrices
C and C_w, this function calcuates
|m - m_w|^2
which captures how different the distributions of real images and generated
images (or more accurately, their visual features) are. Note that unlike the
Inception score, this is a true distance and utilizes information about real
world images.
Note that when computed using sample means and sample covariance matrices,
Frechet distance is biased. It is more biased for small sample sizes. (e.g.
even if the two distributions are the same, for a small sample size, the
expected Frechet distance is large). It is important to use the same
sample size to compute frechet classifier distance when comparing two
generative models.
In this variant, we only compute the difference between the means of the
fitted Gaussians. The computation leads to O(n) vs. O(n^2) memory usage, yet
still retains much of the same information as FID.
Args:
real_activations: 2D array of activations of real images of size
[num_images, num_dims] to use to compute Frechet Inception distance.
generated_activations: 2D array of activations of generated images of size
[num_images, num_dims] to use to compute Frechet Inception distance.
Returns:
The mean-only Frechet Inception distance. A floating-point scalar of the
same type as the output of the activations.
"""
real_activations.shape.assert_has_rank(2)
generated_activations.shape.assert_has_rank(2)
activations_dtype = real_activations.dtype
if activations_dtype != dtypes.float64:
real_activations = math_ops.to_double(real_activations)
generated_activations = math_ops.to_double(generated_activations)
# Compute means of activations.
m = math_ops.reduce_mean(real_activations, 0)
m_w = math_ops.reduce_mean(generated_activations, 0)
# Next the distance between means.
mean = math_ops.square(linalg_ops.norm(m - m_w)) # This uses the L2 norm.
mofid = mean
if activations_dtype != dtypes.float64:
mofid = math_ops.cast(mofid, activations_dtype)
return mofid
开发者ID:PuchatekwSzortach,项目名称:tensorflow,代码行数:54,代码来源:classifier_metrics_impl.py
示例9: Test
def Test(self):
np.random.seed(1)
n = shape_[-1]
batch_shape = shape_[:-2]
np_dtype = dtype_.as_numpy_dtype
a = np.random.uniform(
low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
if dtype_.is_complex:
a += 1j * np.random.uniform(
low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
a += np.conj(a.T)
a = np.tile(a, batch_shape + (1, 1))
# Optimal stepsize for central difference is O(epsilon^{1/3}).
epsilon = np.finfo(np_dtype).eps
delta = 0.1 * epsilon**(1.0 / 3.0)
# tolerance obtained by looking at actual differences using
# np.linalg.norm(theoretical-numerical, np.inf) on -mavx build
if dtype_ in (dtypes_lib.float32, dtypes_lib.complex64):
tol = 1e-2
else:
tol = 1e-7
with self.test_session():
tf_a = constant_op.constant(a)
if compute_v_:
tf_e, tf_v = linalg_ops.self_adjoint_eig(tf_a)
# (complex) Eigenvectors are only unique up to an arbitrary phase
# We normalize the vectors such that the first component has phase 0.
reference = tf_v / linalg_ops.norm(
tf_v[..., 0:1, :], axis=-1, keep_dims=True)
tf_v *= math_ops.conj(reference)
outputs = [tf_e, tf_v]
else:
tf_e = linalg_ops.self_adjoint_eigvals(tf_a)
outputs = [tf_e,]
for b in outputs:
x_init = np.random.uniform(
low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
if dtype_.is_complex:
x_init += 1j * np.random.uniform(
low=-1.0, high=1.0, size=n * n).reshape([n, n]).astype(np_dtype)
x_init += np.conj(x_init.T)
x_init = np.tile(x_init, batch_shape + (1, 1))
theoretical, numerical = gradient_checker.compute_gradient(
tf_a,
tf_a.get_shape().as_list(),
b,
b.get_shape().as_list(),
x_init_value=x_init,
delta=delta)
self.assertAllClose(theoretical, numerical, atol=tol, rtol=tol)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:50,代码来源:self_adjoint_eig_op_test.py
示例10: make_grouping_predictions
def make_grouping_predictions(self, input_layer, reuse=None):
"""model that predicts grouping (grouping_actions).
Args:
input_layer: group_input_layer
reuse: reuse
Returns:
grouping_actions: actions
grouping_log_probs: log probabilities corresponding to actions
"""
with variable_scope.variable_scope(self.hparams.name, reuse=True):
# input_layer: tensor of size [1, num_ops, hidden_size]
w_grouping_ff = variable_scope.get_variable("w_grouping_ff")
w_grouping_softmax = variable_scope.get_variable("w_grouping_softmax")
batch_size = array_ops.shape(input_layer)[0]
embedding_dim = array_ops.shape(input_layer)[2]
reshaped = array_ops.reshape(input_layer,
[batch_size * self.num_ops, embedding_dim])
ff_output = math_ops.matmul(reshaped, w_grouping_ff)
logits = math_ops.matmul(ff_output, w_grouping_softmax)
if self.hparams.logits_std_noise > 0:
num_in_logits = math_ops.cast(
array_ops.size(logits), dtype=dtypes.float32)
avg_norm = math_ops.divide(
linalg_ops.norm(logits), math_ops.sqrt(num_in_logits))
logits_noise = random_ops.random_normal(
array_ops.shape(logits),
stddev=self.hparams.logits_std_noise * avg_norm)
logits = control_flow_ops.cond(
self.global_step > self.hparams.stop_noise_step, lambda: logits,
lambda: logits + logits_noise)
logits = array_ops.reshape(logits,
[batch_size * self.num_ops, self.num_groups])
actions = random_ops.multinomial(logits, 1, seed=self.hparams.seed)
actions = math_ops.to_int32(actions)
actions = array_ops.reshape(actions, [batch_size, self.num_ops])
action_label = array_ops.reshape(actions, [-1])
log_probs = nn_ops.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=action_label)
log_probs = array_ops.reshape(log_probs, [batch_size, -1])
log_probs = math_ops.reduce_sum(log_probs, 1)
grouping_actions = actions
grouping_log_probs = log_probs
return grouping_actions, grouping_log_probs
开发者ID:neuroradiology,项目名称:tensorflow,代码行数:47,代码来源:hierarchical_controller.py
示例11: testTransform
def testTransform(self):
# This tests all combinations of:
# - ids rank 0, 1, >1
# - params sharded/unsharded
# It always applies max_norm.
np.random.seed(8)
l2_norm = 2.
with self.cached_session():
# Param values are in [l2_norm, l2_norm+1) so it will always clip.
params = np.random.rand(6, 3) + l2_norm
params_norm = l2_norm * params / np.sqrt(
np.sum(params * params, axis=1, keepdims=True))
# Compute the norm of each embedding. This will change the embedding
# rank to 0.
params_norm = np.linalg.norm(params_norm, axis=1)
transform = lambda x: linalg_ops.norm(x, axis=1)
for ids_shape in (), (3), (4, 3), (2, 3, 4):
# Test ids rank 0, 1, 2, 3.
ids = np.random.randint(
params.shape[0], size=np.prod(ids_shape,
dtype=np.int64)).reshape(ids_shape)
# Compare nonsharded to gather.
simple = embedding_ops._embedding_lookup_and_transform(
params, ids, max_norm=l2_norm, transform_fn=transform).eval()
self.assertAllClose(simple, array_ops.gather(params_norm, ids).eval())
# Run a few different sharded versions.
for procs in 1, 2, 3:
stride = procs * math_ops.range(params.shape[0] // procs)
split_params = [
array_ops.gather(params, stride + p) for p in xrange(procs)
]
sharded = embedding_ops._embedding_lookup_and_transform(
split_params, ids, max_norm=l2_norm,
transform_fn=transform).eval()
# assertAllClose is used here as different implementations of sqrt may
# be used to compute each of the values being compared. For example,
# on AVX512 builds the embedding operation makes use of Eigen's fast
# vectorized square root algorithm for doubles. These different
# implementations of sqrt are not guaranteed to produce exactly the
# same results. Therefore, an exact comparison cannot be made.
self.assertAllClose(simple, sharded)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:41,代码来源:embedding_ops_test.py
示例12: testBadOrder
def testBadOrder(self):
matrix = [[0., 1.], [2., 3.]]
for ord_ in "fro", -7, -1.1, 0:
with self.assertRaisesRegexp(ValueError,
"'ord' must be a supported vector norm"):
linalg_ops.norm(matrix, ord=ord_)
for ord_ in "fro", -7, -1.1, 0:
with self.assertRaisesRegexp(ValueError,
"'ord' must be a supported vector norm"):
linalg_ops.norm(matrix, ord=ord_, axis=-1)
for ord_ in "foo", -7, -1.1, 1.1:
with self.assertRaisesRegexp(ValueError,
"'ord' must be a supported matrix norm"):
linalg_ops.norm(matrix, ord=ord_, axis=[-2, -1])
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:16,代码来源:norm_op_test.py
示例13: operator_and_matrix
def operator_and_matrix(
self, build_info, dtype, use_placeholder,
ensure_self_adjoint_and_pd=False):
shape = list(build_info.shape)
reflection_axis = linear_operator_test_util.random_sign_uniform(
shape[:-1], minval=1., maxval=2., dtype=dtype)
# Make sure unit norm.
reflection_axis = reflection_axis / linalg_ops.norm(
reflection_axis, axis=-1, keepdims=True)
lin_op_reflection_axis = reflection_axis
if use_placeholder:
lin_op_reflection_axis = array_ops.placeholder_with_default(
reflection_axis, shape=None)
operator = householder.LinearOperatorHouseholder(lin_op_reflection_axis)
mat = reflection_axis[..., array_ops.newaxis]
matrix = -2 * math_ops.matmul(mat, mat, adjoint_b=True)
matrix = array_ops.matrix_set_diag(
matrix, 1. + array_ops.matrix_diag_part(matrix))
return operator, matrix
开发者ID:aritratony,项目名称:tensorflow,代码行数:24,代码来源:linear_operator_householder_test.py
示例14: frechet_classifier_distance_from_activations
def frechet_classifier_distance_from_activations(
real_activations, generated_activations):
"""Classifier distance for evaluating a generative model.
This is based on the Frechet Inception distance, but for an arbitrary
classifier.
This technique is described in detail in https://arxiv.org/abs/1706.08500.
Given two Gaussian distribution with means m and m_w and covariance matrices
C and C_w, this function calcuates
|m - m_w|^2 + Tr(C + C_w - 2(C * C_w)^(1/2))
which captures how different the distributions of real images and generated
images (or more accurately, their visual features) are. Note that unlike the
Inception score, this is a true distance and utilizes information about real
world images.
Note that when computed using sample means and sample covariance matrices,
Frechet distance is biased. It is more biased for small sample sizes. (e.g.
even if the two distributions are the same, for a small sample size, the
expected Frechet distance is large). It is important to use the same
sample size to compute frechet classifier distance when comparing two
generative models.
Args:
real_activations: Real images to use to compute Frechet Inception distance.
generated_activations: Generated images to use to compute Frechet Inception
distance.
Returns:
The Frechet Inception distance. A floating-point scalar of the same type
as the output of the activations.
"""
real_activations.shape.assert_has_rank(2)
generated_activations.shape.assert_has_rank(2)
activations_dtype = real_activations.dtype
if activations_dtype != dtypes.float64:
real_activations = math_ops.to_double(real_activations)
generated_activations = math_ops.to_double(generated_activations)
# Compute mean and covariance matrices of activations.
m = math_ops.reduce_mean(real_activations, 0)
m_v = math_ops.reduce_mean(generated_activations, 0)
num_examples = math_ops.to_double(array_ops.shape(real_activations)[0])
# sigma = (1 / (n - 1)) * (X - mu) (X - mu)^T
real_centered = real_activations - m
sigma = math_ops.matmul(
real_centered, real_centered, transpose_a=True) / (num_examples - 1)
gen_centered = generated_activations - m_v
sigma_v = math_ops.matmul(
gen_centered, gen_centered, transpose_a=True) / (num_examples - 1)
# Find the Tr(sqrt(sigma sigma_v)) component of FID
sqrt_trace_component = trace_sqrt_product(sigma, sigma_v)
# Compute the two components of FID.
# First the covariance component.
# Here, note that trace(A + B) = trace(A) + trace(B)
trace = math_ops.trace(sigma + sigma_v) - 2.0 * sqrt_trace_component
# Next the distance between means.
mean = math_ops.square(linalg_ops.norm(m - m_v)) # This uses the L2 norm.
fid = trace + mean
if activations_dtype != dtypes.float64:
fid = math_ops.cast(fid, activations_dtype)
return fid
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:72,代码来源:classifier_metrics_impl.py
示例15: frechet_classifier_distance
def frechet_classifier_distance(real_images,
generated_images,
classifier_fn,
num_batches=1):
"""Classifier distance for evaluating a conditional generative model.
This is based on the Frechet Inception distance, but for an arbitrary
classifier.
This technique is described in detail in https://arxiv.org/abs/1706.08500.
Given two Gaussian distribution with means m and m_w and covariance matrices
C and C_w, this function calcuates
|m - m_w|^2 + Tr(C + C_w - 2(C * C_w)^(1/2))
which captures how different the distributions of real images and generated
images (or more accurately, their visual features) are. Note that unlike the
Inception score, this is a true distance and utilizes information about real
world images.
Args:
real_images: Real images to use to compute Frechet Inception distance.
generated_images: Generated images to use to compute Frechet Inception
distance.
classifier_fn: A function that takes images and produces activations
based on a classifier.
num_batches: Number of batches to split images in to in order to
efficiently run them through the classifier network.
Returns:
The Frechet Inception distance. A floating-point scalar.
"""
real_images_list = array_ops.split(
real_images, num_or_size_splits=num_batches)
generated_images_list = array_ops.split(
generated_images, num_or_size_splits=num_batches)
imgs = array_ops.stack(real_images_list + generated_images_list)
# Compute the activations using the memory-efficient `map_fn`.
activations = functional_ops.map_fn(
fn=classifier_fn,
elems=imgs,
parallel_iterations=1,
back_prop=False,
swap_memory=True,
name='RunClassifier')
# Split the activations by the real and generated images.
real_a, gen_a = array_ops.split(activations, [num_batches, num_batches], 0)
# Ensure the activations have the right shapes.
real_a = array_ops.concat(array_ops.unstack(real_a), 0)
gen_a = array_ops.concat(array_ops.unstack(gen_a), 0)
real_a.shape.assert_has_rank(2)
gen_a.shape.assert_has_rank(2)
# Compute mean and covariance matrices of activations.
m = math_ops.reduce_mean(real_a, 0)
m_v = math_ops.reduce_mean(gen_a, 0)
dim = math_ops.to_float(array_ops.shape(m)[0])
sigma = math_ops.matmul(real_a - m, real_a - m, transpose_b=True) / dim
sigma_v = math_ops.matmul(gen_a - m, gen_a - m, transpose_b=True) / dim
# Take matrix square root of the product of covariance matrices.
sqcc = _matrix_square_root(math_ops.matmul(sigma, sigma_v))
# Compute the two components of FID.
trace = math_ops.trace(sigma + sigma_v - 2.0 * sqcc)
mean = math_ops.square(linalg_ops.norm(m - m_v)) # This uses the L2 norm.
fid = trace + mean
return fid
开发者ID:1000sprites,项目名称:tensorflow,代码行数:74,代码来源:classifier_metrics_impl.py
示例16: diagonal_only_frechet_classifier_distance_from_activations
def diagonal_only_frechet_classifier_distance_from_activations(
real_activations, generated_activations):
"""Classifier distance for evaluating a generative model.
This is based on the Frechet Inception distance, but for an arbitrary
classifier.
This technique is described in detail in https://arxiv.org/abs/1706.08500.
Given two Gaussian distribution with means m and m_w and covariance matrices
C and C_w, this function calcuates
|m - m_w|^2 + (sigma + sigma_w - 2(sigma x sigma_w)^(1/2))
which captures how different the distributions of real images and generated
images (or more accurately, their visual features) are. Note that unlike the
Inception score, this is a true distance and utilizes information about real
world images. In this variant, we compute diagonal-only covariance matrices.
As a result, instead of computing an expensive matrix square root, we can do
something much simpler, and has O(n) vs O(n^2) space complexity.
Note that when computed using sample means and sample covariance matrices,
Frechet distance is biased. It is more biased for small sample sizes. (e.g.
even if the two distributions are the same, for a small sample size, the
expected Frechet distance is large). It is important to use the same
sample size to compute frechet classifier distance when comparing two
generative models.
Args:
real_activations: Real images to use to compute Frechet Inception distance.
generated_activations: Generated images to use to compute Frechet Inception
distance.
Returns:
The diagonal-only Frechet Inception distance. A floating-point scalar of
the same type as the output of the activations.
Raises:
ValueError: If the shape of the variance and mean vectors are not equal.
"""
real_activations.shape.assert_has_rank(2)
generated_activations.shape.assert_has_rank(2)
activations_dtype = real_activations.dtype
if activations_dtype != dtypes.float64:
real_activations = math_ops.to_double(real_activations)
generated_activations = math_ops.to_double(generated_activations)
# Compute mean and covariance matrices of activations.
m, var = nn_impl.moments(real_activations, axes=[0])
m_w, var_w = nn_impl.moments(generated_activations, axes=[0])
actual_shape = var.get_shape()
expected_shape = m.get_shape()
if actual_shape != expected_shape:
raise ValueError('shape: {} must match expected shape: {}'.format(
actual_shape, expected_shape))
# Compute the two components of FID.
# First the covariance component.
# Here, note that trace(A + B) = trace(A) + trace(B)
trace = math_ops.reduce_sum(
(var + var_w) - 2.0 * math_ops.sqrt(math_ops.multiply(var, var_w)))
# Next the distance between means.
mean = math_ops.square(linalg_ops.norm(m - m_w)) # This uses the L2 norm.
dofid = trace + mean
if activations_dtype != dtypes.float64:
dofid = math_ops.cast(dofid, activations_dtype)
return dofid
开发者ID:PuchatekwSzortach,项目名称:tensorflow,代码行数:72,代码来源:classifier_metrics_impl.py
示例17: frechet_classifier_distance_from_activations
def frechet_classifier_distance_from_activations(
real_activations, generated_activations):
"""Classifier distance for evaluating a generative model from activations.
This methods computes the Frechet classifier distance from activations of
real images and generated images. This can be used independently of the
frechet_classifier_distance() method, especially in the case of using large
batches during evaluation where we would like precompute all of the
activations before computing the classifier distance.
This technique is described in detail in https://arxiv.org/abs/1706.08500.
Given two Gaussian distribution with means m and m_w and covariance matrices
C and C_w, this function calcuates
|m - m_w|^2 + Tr(C + C_w - 2(C * C_w)^(1/2))
which captures how different the distributions of real images and generated
images (or more accurately, their visual features) are. Note that unlike the
Inception score, this is a true distance and utilizes information about real
world images.
Args:
real_activations: 2D Tensor containing activations of real data. Shape is
[batch_size, activation_size].
generated_activations: 2D Tensor containing activations of generated data.
Shape is [batch_size, activation_size].
Returns:
The Frechet Inception distance. A floating-point scalar of the same type
as the output of the activations.
"""
real_activations.shape.assert_has_rank(2)
generated_activations.shape.assert_has_rank(2)
activations_dtype = real_activations.dtype
if activations_dtype != dtypes.float64:
real_activations = math_ops.to_double(real_activations)
generated_activations = math_ops.to_double(generated_activations)
# Compute mean and covariance matrices of activations.
m = math_ops.reduce_mean(real_activations, 0)
m_v = math_ops.reduce_mean(generated_activations, 0)
num_examples = math_ops.to_double(array_ops.shape(real_activations)[0])
# sigma = (1 / (n - 1)) * (X - mu) (X - mu)^T
real_centered = real_activations - m
sigma = math_ops.matmul(
real_centered, real_centered, transpose_a=True) / (num_examples - 1)
gen_centered = generated_activations - m_v
sigma_v = math_ops.matmul(
gen_centered, gen_centered, transpose_a=True) / (num_examples - 1)
# Find the Tr(sqrt(sigma sigma_v)) component of FID
sqrt_trace_component = trace_sqrt_product(sigma, sigma_v)
# Compute the two components of FID.
# First the covariance component.
# Here, note that trace(A + B) = trace(A) + trace(B)
trace = math_ops.trace(sigma + sigma_v) - 2.0 * sqrt_trace_component
# Next the distance between means.
mean = math_ops.square(linalg_ops.norm(m - m_v)) # This uses the L2 norm.
fid = trace + mean
if activations_dtype != dtypes.float64:
fid = math_ops.cast(fid, activations_dtype)
return fid
开发者ID:changchunli,项目名称:compare_gan,代码行数:70,代码来源:classifier_metrics_impl.py
示例18: process_quadrature_grid_and_probs
def process_quadrature_grid_and_probs(
quadrature_grid_and_probs, dtype, validate_args, name=None):
"""Validates quadrature grid, probs or computes them as necessary.
Args:
quadrature_grid_and_probs: Python pair of `float`-like `Tensor`s
representing the sample points and the corresponding (possibly
normalized) weight. When `None`, defaults to:
`np.polynomial.hermite.hermgauss(deg=8)`.
dtype: The expected `dtype` of `grid` and `probs`.
validate_args: Python `bool`, default `False`. When `True` distribution
parameters are checked for validity despite possibly degrading runtime
performance. When `False` invalid inputs may silently render incorrect
outputs.
name: Python `str` name prefixed to Ops created by this class.
Returns:
quadrature_grid_and_probs: Python pair of `float`-like `Tensor`s
representing the sample points and the corresponding (possibly
normalized) weight.
Raises:
ValueError: if `quadrature_grid_and_probs is not None` and
`len(quadrature_grid_and_probs[0]) != len(quadrature_grid_and_probs[1])`
"""
with ops.name_scope(name, "process_quadrature_grid_and_probs",
[quadrature_grid_and_probs]):
if quadrature_grid_and_probs is None:
grid, probs = np.polynomial.hermite.hermgauss(deg=8)
grid = grid.astype(dtype.as_numpy_dtype)
probs = probs.astype(dtype.as_numpy_dtype)
probs /= np.linalg.norm(probs, ord=1, keepdims=True)
grid = ops.convert_to_tensor(grid, name="grid", dtype=dtype)
probs = ops.convert_to_tensor(probs, name="probs", dtype=dtype)
return grid, probs
grid, probs = tuple(quadrature_grid_and_probs)
grid = ops.convert_to_tensor(grid, name="grid", dtype=dtype)
probs = ops.convert_to_tensor(probs, name="unnormalized_probs",
dtype=dtype)
probs /= linalg_ops.norm(probs, ord=1, axis=-1, keep_dims=True,
name="probs")
def _static_dim_size(x, axis):
"""Returns the static size of a specific dimension or `None`."""
return x.shape.with_rank_at_least(axis + 1)[axis].value
m, n = _static_dim_size(probs, axis=0), _static_dim_size(grid, axis=0)
if m is not None and n is not None:
if m != n:
raise ValueError("`quadrature_grid_and_probs` must be a `tuple` of "
"same-length zero-th-dimension `Tensor`s "
"(saw lengths {}, {})".format(m, n))
elif validate_args:
grid = control_flow_ops.with_dependencies([
check_ops.assert_equal(
dimension_size(probs, axis=0),
dimension_size(grid, axis=0),
message=("`quadrature_grid_and_probs` must be a `tuple` of "
"same-length zero-th-dimension `Tensor`s")),
], grid)
return grid, probs
开发者ID:Kongsea,项目名称:tensorflow,代码行数:63,代码来源:util.py
示例19: conjugate_gradient
def conjugate_gradient(operator,
rhs,
preconditioner=None,
x=None,
tol=1e-4,
max_iter=20,
name="conjugate_gradient"):
r"""Conjugate gradient solver.
Solves a linear system of equations `A*x = rhs` for selfadjoint, positive
definite matrix `A` and right-hand side vector `rhs`, using an iterative,
matrix-free algorithm where the action of the matrix A is represented by
`operator`. The iteration terminates when either the number of iterations
exceeds `max_iter` or when the residual norm has been reduced to `tol`
times its initial value, i.e. \\(||rhs - A x_k|| <= tol ||rhs||\\).
Args:
operator: An object representing a linear operator with attributes:
- shape: Either a list of integers or a 1-D `Tensor` of type `int32` of
length 2. `shape[0]` is the dimension on the domain of the operator,
`shape[1]` is the dimension of the co-domain of the operator. On other
words, if operator represents an N x N matrix A, `shape` must contain
`[N, N]`.
- dtype: The datatype of input to and output from `apply`.
- apply: Callable object taking a vector `x` as input and returning a
vector with the result of applying the operator to `x`, i.e. if
`operator` represents matrix `A`, `apply` should return `A * x`.
rhs: A rank-1 `Tensor` of shape `[N]` containing the right-hand size vector.
preconditioner: An object representing a linear operator, see `operator`
for detail. The preconditioner should approximate the inverse of `A`.
An efficient preconditioner could dramatically improve the rate of
convergence. If `preconditioner` represents matrix `M`(`M` approximates
`A^{-1}`), the algorithm uses `preconditioner.apply(x)` to estimate
`A^{-1}x`. For this to be useful, the cost of applying `M` should be
much lower than computing `A^{-1}` directly.
x: A rank-1 `Tensor` of shape `[N]` containing the initial guess for the
solution.
tol: A float scalar convergence tolerance.
max_iter: An integer giving the maximum number of iterations.
name: A name scope for the operation.
Returns:
output: A namedtuple representing the final state with fields:
- i: A scalar `int32` `Tensor`. Number of iterations executed.
- x: A rank-1 `Tensor` of shape `[N]` containing the computed solution.
- r: A rank-1 `Tensor` of shape `[M]` containing the residual vector.
- p: A rank-1 `Tensor` of shape `[N]`. `A`-conjugate basis vector.
|
请发表评论