本文整理汇总了Python中tensorflow.python.lib.io.tf_record.tf_record_iterator函数的典型用法代码示例。如果您正苦于以下问题:Python tf_record_iterator函数的具体用法?Python tf_record_iterator怎么用?Python tf_record_iterator使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了tf_record_iterator函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testWriteEvents
def testWriteEvents(self):
file_prefix = os.path.join(self.get_temp_dir(), "events")
writer = pywrap_tensorflow.EventsWriter(file_prefix)
filename = writer.FileName()
event_written = event_pb2.Event(
wall_time=123.45, step=67,
summary=summary_pb2.Summary(
value=[summary_pb2.Summary.Value(tag="foo", simple_value=89.0)]))
writer.WriteEvent(event_written)
writer.Flush()
writer.Close()
with self.assertRaises(IOError):
for r in tf_record.tf_record_iterator(filename + "DOES_NOT_EXIST"):
self.assertTrue(False)
reader = tf_record.tf_record_iterator(filename)
event_read = event_pb2.Event()
event_read.ParseFromString(next(reader))
self.assertTrue(event_read.HasField("file_version"))
event_read.ParseFromString(next(reader))
# Second event
self.assertProtoEquals("""
wall_time: 123.45 step: 67
summary { value { tag: 'foo' simple_value: 89.0 } }
""", event_read)
with self.assertRaises(StopIteration):
next(reader)
开发者ID:debaratidas1994,项目名称:tensorflow,代码行数:31,代码来源:events_writer_test.py
示例2: _CompressionSizeDelta
def _CompressionSizeDelta(self, records, options_a, options_b):
"""Validate compression with options_a and options_b and return size delta.
Compress records with options_a and options_b. Uncompress both compressed
files and assert that the contents match the original records. Finally
calculate how much smaller the file compressed with options_a was than the
file compressed with options_b.
Args:
records: The records to compress
options_a: First set of options to compress with, the baseline for size.
options_b: Second set of options to compress with.
Returns:
The difference in file size when using options_a vs options_b. A positive
value means options_a was a better compression than options_b. A negative
value means options_b had better compression than options_a.
"""
fn_a = self._WriteRecordsToFile(records, "tfrecord_a", options=options_a)
test_a = list(tf_record.tf_record_iterator(fn_a, options=options_a))
self.assertEqual(records, test_a, options_a)
fn_b = self._WriteRecordsToFile(records, "tfrecord_b", options=options_b)
test_b = list(tf_record.tf_record_iterator(fn_b, options=options_b))
self.assertEqual(records, test_b, options_b)
# Negative number => better compression.
return os.path.getsize(fn_a) - os.path.getsize(fn_b)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:30,代码来源:tf_record_test.py
示例3: testZLibFlushRecord
def testZLibFlushRecord(self):
original = [b"small record"]
fn = self._WriteRecordsToFile(original, "small_record")
with open(fn, "rb") as h:
buff = h.read()
# creating more blocks and trailing blocks shouldn't break reads
compressor = zlib.compressobj(9, zlib.DEFLATED, zlib.MAX_WBITS)
output = b""
for c in buff:
if isinstance(c, int):
c = six.int2byte(c)
output += compressor.compress(c)
output += compressor.flush(zlib.Z_FULL_FLUSH)
output += compressor.flush(zlib.Z_FULL_FLUSH)
output += compressor.flush(zlib.Z_FULL_FLUSH)
output += compressor.flush(zlib.Z_FINISH)
# overwrite the original file with the compressed data
with open(fn, "wb") as h:
h.write(output)
options = tf_record.TFRecordOptions(TFRecordCompressionType.ZLIB)
actual = list(tf_record.tf_record_iterator(fn, options=options))
self.assertEqual(actual, original)
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:27,代码来源:tf_record_test.py
示例4: testWriteGZIP
def testWriteGZIP(self):
options = tf_record.TFRecordOptions(tf_record.TFRecordCompressionType.GZIP)
self.evaluate(
self.writer_fn(self._createFile(options), compression_type="GZIP"))
for i, r in enumerate(
tf_record.tf_record_iterator(self._outputFilename(), options=options)):
self.assertAllEqual(self._record(i), r)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:7,代码来源:tf_record_writer_test.py
示例5: list_events
def list_events(self):
"""List all scalar events in the directory.
Returns:
A dictionary. Key is the name of a event. Value is a set of dirs that contain that event.
"""
event_dir_dict = {}
for event_file in self._glob_events_files(self._paths):
dir = os.path.dirname(event_file)
try:
for record in tf_record.tf_record_iterator(event_file):
event = event_pb2.Event.FromString(record)
if event.summary is None or event.summary.value is None:
continue
for value in event.summary.value:
if value.simple_value is None or value.tag is None:
continue
if value.tag not in event_dir_dict:
event_dir_dict[value.tag] = set()
event_dir_dict[value.tag].add(dir)
except:
# It seems current TF (1.0) has a bug when iterating events from a file near the end.
# For now just catch and pass.
# print('Error in iterating events from file ' + event_file)
continue
return event_dir_dict
开发者ID:javiervicho,项目名称:pydatalab,代码行数:26,代码来源:_summary.py
示例6: local_predict
def local_predict(args):
"""Runs prediction locally."""
sess = session.Session()
_ = loader.load(sess, [tag_constants.SERVING], args.model_dir)
# get the mappings between aliases and tensor names
# for both inputs and outputs
input_alias_map = json.loads(sess.graph.get_collection('inputs')[0])
output_alias_map = json.loads(sess.graph.get_collection('outputs')[0])
aliases, tensor_names = zip(*output_alias_map.items())
for input_file in args.input:
feed_dict = collections.defaultdict(list)
for line in tf_record.tf_record_iterator(input_file):
feed_dict[input_alias_map['examples_bytes']].append(line)
if args.dry_run:
print('Feed data dict %s to graph and fetch %s' % (
feed_dict, tensor_names))
else:
result = sess.run(fetches=tensor_names, feed_dict=feed_dict)
for row in zip(*result):
print(json.dumps(
{name: (value.tolist() if getattr(value, 'tolist', None) else value)
for name, value in zip(aliases, row)}))
开发者ID:zhang01GA,项目名称:cloudml-samples,代码行数:26,代码来源:local_predict.py
示例7: testWrite
def testWrite(self):
with self.cached_session() as sess:
sess.run(
self.writer, feed_dict={
self.filename: self._createFile(),
})
for i, r in enumerate(tf_record.tf_record_iterator(self._outputFilename())):
self.assertAllEqual(self._record(i), r)
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:8,代码来源:tf_record_writer_test.py
示例8: testWriteAndRead
def testWriteAndRead(self):
records = list(map(self._Record, range(self._num_records)))
for record in records:
self._writer.write(record)
self._writer.close()
actual = list(tf_record.tf_record_iterator(self._fn, self._options))
self.assertListEqual(actual, records)
开发者ID:ZhangXinNan,项目名称:tensorflow,代码行数:8,代码来源:tf_record_test.py
示例9: get_events
def get_events(self, event_names):
"""Get all events as pandas DataFrames given a list of names.
Args:
event_names: A list of events to get.
Returns:
A list with the same length as event_names. Each element is a dictionary
{dir1: DataFrame1, dir2: DataFrame2, ...}.
Multiple directories may contain events with the same name, but they are different
events (i.e. 'loss' under trains_set/, and 'loss' under eval_set/.)
"""
if ((sys.version_info.major > 2 and isinstance(event_names, str)) or
(sys.version_info.major <= 2 and isinstance(event_names, basestring))):
event_names = [event_names]
all_events = self.list_events()
dirs_to_look = set()
for event, dirs in all_events.iteritems():
if event in event_names:
dirs_to_look.update(dirs)
ret_events = [dict() for i in range(len(event_names))]
for dir in dirs_to_look:
for event_file in self._glob_events_files([dir]):
try:
for record in tf_record.tf_record_iterator(event_file):
event = event_pb2.Event.FromString(record)
if event.summary is None or event.wall_time is None or event.summary.value is None:
continue
event_time = datetime.datetime.fromtimestamp(event.wall_time)
for value in event.summary.value:
if value.tag not in event_names or value.simple_value is None:
continue
index = event_names.index(value.tag)
dir_event_dict = ret_events[index]
if dir not in dir_event_dict:
dir_event_dict[dir] = pd.DataFrame(
[[event_time, event.step, value.simple_value]],
columns=['time', 'step', 'value'])
else:
df = dir_event_dict[dir]
# Append a row.
df.loc[len(df)] = [event_time, event.step, value.simple_value]
except:
# It seems current TF (1.0) has a bug when iterating events from a file near the end.
# For now just catch and pass.
# print('Error in iterating events from file ' + event_file)
continue
for dir_event_dict in ret_events:
for df in dir_event_dict.values():
df.sort_values(by=['time'], inplace=True)
return ret_events
开发者ID:javiervicho,项目名称:pydatalab,代码行数:58,代码来源:_summary.py
示例10: testWriteGzipRead
def testWriteGzipRead(self):
original = [b"foo", b"bar"]
options = tf_record.TFRecordOptions(TFRecordCompressionType.GZIP)
fn = self._WriteRecordsToFile(original, "write_gzip_read.tfrecord.gz",
options)
gzfn = self._GzipDecompressFile(fn, "write_gzip_read.tfrecord")
actual = list(tf_record.tf_record_iterator(gzfn))
self.assertEqual(actual, original)
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:9,代码来源:tf_record_test.py
示例11: testGzipReadWrite
def testGzipReadWrite(self):
"""Verify that files produced are gzip compatible."""
original = [b"foo", b"bar"]
fn = self._WriteRecordsToFile(original, "gzip_read_write.tfrecord")
gzfn = self._GzipCompressFile(fn, "tfrecord.gz")
options = tf_record.TFRecordOptions(TFRecordCompressionType.GZIP)
actual = list(tf_record.tf_record_iterator(gzfn, options=options))
self.assertEqual(actual, original)
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:9,代码来源:tf_record_test.py
示例12: _readLastEvent
def _readLastEvent(self, logdir=None):
if not logdir:
logdir = self._tmp_logdir
files = [f for f in gfile.ListDirectory(logdir)
if not gfile.IsDirectory(os.path.join(logdir, f))]
file_path = os.path.join(logdir, files[0])
records = list(tf_record.tf_record_iterator(file_path))
event = event_pb2.Event()
event.ParseFromString(records[-1])
return event
开发者ID:Crazyonxh,项目名称:tensorflow,代码行数:10,代码来源:summary_writer_test.py
示例13: testZlibReadWrite
def testZlibReadWrite(self):
"""Verify that files produced are zlib compatible."""
original = [b"foo", b"bar"]
fn = self._WriteRecordsToFile(original, "zlib_read_write.tfrecord")
zfn = self._ZlibCompressFile(fn, "zlib_read_write.tfrecord.z")
# read the compressed contents and verify.
options = tf_record.TFRecordOptions(TFRecordCompressionType.ZLIB)
actual = list(tf_record.tf_record_iterator(zfn, options=options))
self.assertEqual(actual, original)
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:10,代码来源:tf_record_test.py
示例14: testWriteZlibRead
def testWriteZlibRead(self):
"""Verify compression with TFRecordWriter is zlib library compatible."""
original = [b"foo", b"bar"]
fn = self._WriteCompressedRecordsToFile(original,
"write_zlib_read.tfrecord.z")
zfn = self._ZlibDecompressFile(fn, "write_zlib_read.tfrecord")
actual = []
for r in tf_record.tf_record_iterator(zfn):
actual.append(r)
self.assertEqual(actual, original)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:10,代码来源:reader_ops_test.py
示例15: testWriteZlibRead
def testWriteZlibRead(self):
"""Verify compression with TFRecordWriter is zlib library compatible."""
original = [b"foo", b"bar"]
options = tf_record.TFRecordOptions(TFRecordCompressionType.ZLIB)
fn = self._WriteRecordsToFile(original, "write_zlib_read.tfrecord.z",
options)
zfn = self._ZlibDecompressFile(fn, "write_zlib_read.tfrecord")
actual = list(tf_record.tf_record_iterator(zfn))
self.assertEqual(actual, original)
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:10,代码来源:tf_record_test.py
示例16: testWriteZlibReadLarge
def testWriteZlibReadLarge(self):
"""Verify compression for large records is zlib library compatible."""
# Make it large (about 5MB)
original = [_TEXT * 10240]
options = tf_record.TFRecordOptions(TFRecordCompressionType.ZLIB)
fn = self._WriteRecordsToFile(original, "write_zlib_read_large.tfrecord.z",
options)
zfn = self._ZlibDecompressFile(fn, "write_zlib_read_large.tfrecord")
actual = list(tf_record.tf_record_iterator(zfn))
self.assertEqual(actual, original)
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:10,代码来源:tf_record_test.py
示例17: testIterator
def testIterator(self):
records = [self._Record(0, i) for i in range(self._num_records)]
options = tf_record.TFRecordOptions(TFRecordCompressionType.ZLIB)
fn = self._WriteRecordsToFile(records, "compressed_records", options)
reader = tf_record.tf_record_iterator(fn, options)
for expected in records:
record = next(reader)
self.assertAllEqual(expected, record)
with self.assertRaises(StopIteration):
record = next(reader)
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:11,代码来源:tf_record_test.py
示例18: testWriteZlibReadLarge
def testWriteZlibReadLarge(self):
"""Verify compression for large records is zlib library compatible."""
# Make it large (about 5MB)
original = [_TEXT * 10240]
fn = self._WriteCompressedRecordsToFile(original,
"write_zlib_read_large.tfrecord.z")
zfn = self._ZlibDecompressFile(fn, "write_zlib_read_large.tf_record")
actual = []
for r in tf_record.tf_record_iterator(zfn):
actual.append(r)
self.assertEqual(actual, original)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:11,代码来源:reader_ops_test.py
示例19: testZlibReadWriteLarge
def testZlibReadWriteLarge(self):
"""Verify that writing large contents also works."""
# Make it large (about 5MB)
original = [_TEXT * 10240]
fn = self._WriteRecordsToFile(original, "zlib_read_write_large.tfrecord")
zfn = self._ZlibCompressFile(fn, "zlib_read_write_large.tfrecord.z")
options = tf_record.TFRecordOptions(TFRecordCompressionType.ZLIB)
actual = list(tf_record.tf_record_iterator(zfn, options=options))
self.assertEqual(actual, original)
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:11,代码来源:tf_record_test.py
示例20: testIterator
def testIterator(self):
fn = self._WriteCompressedRecordsToFile(
[self._Record(i) for i in range(self._num_records)],
"compressed_records")
options = tf_record.TFRecordOptions(
compression_type=TFRecordCompressionType.ZLIB)
reader = tf_record.tf_record_iterator(fn, options)
for i in range(self._num_records):
record = next(reader)
self.assertAllEqual(self._Record(i), record)
with self.assertRaises(StopIteration):
record = next(reader)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:12,代码来源:reader_ops_test.py
注:本文中的tensorflow.python.lib.io.tf_record.tf_record_iterator函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论