本文整理汇总了Python中tensorflow.python.lib.io.file_io.write_string_to_file函数的典型用法代码示例。如果您正苦于以下问题:Python write_string_to_file函数的具体用法?Python write_string_to_file怎么用?Python write_string_to_file使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了write_string_to_file函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testRename
def testRename(self):
file_path = os.path.join(self._base_dir, "temp_file")
file_io.write_string_to_file(file_path, "testing")
rename_path = os.path.join(self._base_dir, "rename_file")
file_io.rename(file_path, rename_path)
self.assertTrue(file_io.file_exists(rename_path))
self.assertFalse(file_io.file_exists(file_path))
开发者ID:AriaAsuka,项目名称:tensorflow,代码行数:7,代码来源:file_io_test.py
示例2: testCopyOverwriteFalse
def testCopyOverwriteFalse(self):
file_path = os.path.join(self._base_dir, "temp_file")
file_io.write_string_to_file(file_path, "testing")
copy_path = os.path.join(self._base_dir, "copy_file")
file_io.write_string_to_file(copy_path, "copy")
with self.assertRaises(errors.AlreadyExistsError):
file_io.copy(file_path, copy_path, overwrite=False)
开发者ID:AriaAsuka,项目名称:tensorflow,代码行数:7,代码来源:file_io_test.py
示例3: _write_object_graph
def _write_object_graph(saveable_view, export_dir, asset_file_def_index):
"""Save a SavedObjectGraph proto for `root`."""
# SavedObjectGraph is similar to the CheckpointableObjectGraph proto in the
# checkpoint. It will eventually go into the SavedModel.
proto = saved_object_graph_pb2.SavedObjectGraph()
saveable_view.fill_object_graph_proto(proto)
coder = nested_structure_coder.StructureCoder()
for concrete_function in saveable_view.concrete_functions:
serialized = function_serialization.serialize_concrete_function(
concrete_function, saveable_view.captured_tensor_node_ids, coder)
if serialized is not None:
proto.concrete_functions[concrete_function.name].CopyFrom(
serialized)
for obj, obj_proto in zip(saveable_view.nodes, proto.nodes):
_write_object_proto(obj, obj_proto, asset_file_def_index)
extra_asset_dir = os.path.join(
compat.as_bytes(export_dir),
compat.as_bytes(constants.EXTRA_ASSETS_DIRECTORY))
file_io.recursive_create_dir(extra_asset_dir)
object_graph_filename = os.path.join(
extra_asset_dir, compat.as_bytes("object_graph.pb"))
file_io.write_string_to_file(object_graph_filename, proto.SerializeToString())
开发者ID:terrytangyuan,项目名称:tensorflow,代码行数:25,代码来源:save.py
示例4: save
def save(self, as_text=False):
"""Writes a `SavedModel` protocol buffer to disk.
The function writes the SavedModel protocol buffer to the export directory
in serialized format.
Args:
as_text: Writes the SavedModel protocol buffer in text format to disk.
Returns:
The path to which the SavedModel protocol buffer was written.
"""
if not file_io.file_exists(self._export_dir):
file_io.recursive_create_dir(self._export_dir)
if as_text:
path = os.path.join(
compat.as_bytes(self._export_dir),
compat.as_bytes(constants.SAVED_MODEL_FILENAME_PBTXT))
file_io.write_string_to_file(path, str(self._saved_model))
else:
path = os.path.join(
compat.as_bytes(self._export_dir),
compat.as_bytes(constants.SAVED_MODEL_FILENAME_PB))
file_io.write_string_to_file(path, self._saved_model.SerializeToString())
tf_logging.info("SavedModel written to: %s", path)
return path
开发者ID:1000sprites,项目名称:tensorflow,代码行数:28,代码来源:builder_impl.py
示例5: _export_model_json
def _export_model_json(model, saved_model_path):
"""Saves model configuration as a json string under assets folder."""
model_json = model.to_json()
model_json_filepath = os.path.join(
saved_model_utils.get_or_create_assets_dir(saved_model_path),
compat.as_text(constants.SAVED_MODEL_FILENAME_JSON))
file_io.write_string_to_file(model_json_filepath, model_json)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:7,代码来源:saved_model.py
示例6: test_numerics
def test_numerics(self):
output_folder = tempfile.mkdtemp()
input_file_path = tempfile.mkstemp(dir=output_folder)[1]
try:
file_io.write_string_to_file(
input_file_path,
'\n'.join(['%s,%s,%s' % (i, 10 * i + 0.5, i + 0.5) for i in range(100)]))
schema = [{'name': 'col1', 'type': 'INTEGER'},
{'name': 'col2', 'type': 'FLOAT'},
{'name': 'col3', 'type': 'FLOAT'}]
features = {'col1': {'transform': 'scale', 'source_column': 'col1'},
'col2': {'transform': 'identity', 'source_column': 'col2'},
'col3': {'transform': 'target'}}
feature_analysis.run_local_analysis(
output_folder, [input_file_path], schema, features)
stats = json.loads(
file_io.read_file_to_string(
os.path.join(output_folder, analyze.constant.STATS_FILE)).decode())
self.assertEqual(stats['num_examples'], 100)
col = stats['column_stats']['col1']
self.assertAlmostEqual(col['max'], 99.0)
self.assertAlmostEqual(col['min'], 0.0)
self.assertAlmostEqual(col['mean'], 49.5)
col = stats['column_stats']['col2']
self.assertAlmostEqual(col['max'], 990.5)
self.assertAlmostEqual(col['min'], 0.5)
self.assertAlmostEqual(col['mean'], 495.5)
finally:
shutil.rmtree(output_folder)
开发者ID:googledatalab,项目名称:pydatalab,代码行数:33,代码来源:test_analyze.py
示例7: update_renames_v2
def update_renames_v2(output_file_path):
"""Writes a Python dictionary mapping deprecated to canonical API names.
Args:
output_file_path: File path to write output to. Any existing contents
would be replaced.
"""
# Set of rename lines to write to output file in the form:
# 'tf.deprecated_name': 'tf.canonical_name'
rename_line_set = set()
# _tf_api_names attribute name
tensorflow_api_attr = tf_export.API_ATTRS[tf_export.TENSORFLOW_API_NAME].names
def visit(unused_path, unused_parent, children):
"""Visitor that collects rename strings to add to rename_line_set."""
for child in children:
_, attr = tf_decorator.unwrap(child[1])
if not hasattr(attr, '__dict__'):
continue
api_names = attr.__dict__.get(tensorflow_api_attr, [])
deprecated_api_names = attr.__dict__.get('_tf_deprecated_api_names', [])
canonical_name = tf_export.get_canonical_name(
api_names, deprecated_api_names)
for name in deprecated_api_names:
rename_line_set.add(' \'tf.%s\': \'tf.%s\'' % (name, canonical_name))
visitor = public_api.PublicAPIVisitor(visit)
visitor.do_not_descend_map['tf'].append('contrib')
traverse.traverse(tf, visitor)
renames_file_text = '%srenames = {\n%s\n}\n' % (
_FILE_HEADER, ',\n'.join(sorted(rename_line_set)))
file_io.write_string_to_file(output_file_path, renames_file_text)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:33,代码来源:generate_v2_renames_map.py
示例8: visualize_embeddings
def visualize_embeddings(summary_writer, config):
"""Stores a config file used by the embedding projector.
Args:
summary_writer: The summary writer used for writing events.
config: `tf.contrib.tensorboard.plugins.projector.ProjectorConfig`
proto that holds the configuration for the projector such as paths to
checkpoint files and metadata files for the embeddings. If
`config.model_checkpoint_path` is none, it defaults to the
`logdir` used by the summary_writer.
Raises:
ValueError: If the summary writer does not have a `logdir`.
"""
logdir = summary_writer.get_logdir()
# Sanity checks.
if logdir is None:
raise ValueError('Summary writer must have a logdir')
# Saving the config file in the logdir.
config_pbtxt = text_format.MessageToString(config)
# FYI - the 'projector_config.pbtxt' string is hardcoded in the projector
# plugin.
# TODO(dandelion): Restore this to a reference to the projector plugin
file_io.write_string_to_file(
os.path.join(logdir, 'projector_config.pbtxt'), config_pbtxt)
开发者ID:RubinLiao,项目名称:tensorflow,代码行数:27,代码来源:__init__.py
示例9: _write_object_graph
def _write_object_graph(saveable_view, export_dir, asset_file_def_index):
"""Save a SavedObjectGraph proto for `root`."""
# SavedObjectGraph is similar to the CheckpointableObjectGraph proto in the
# checkpoint. It will eventually go into the SavedModel.
proto = saved_object_graph_pb2.SavedObjectGraph()
saveable_view.fill_object_graph_proto(proto)
node_ids = util.ObjectIdentityDictionary()
for i, obj in enumerate(saveable_view.nodes):
node_ids[obj] = i
if resource_variable_ops.is_resource_variable(obj):
node_ids[obj.handle] = i
elif isinstance(obj, tracking.TrackableAsset):
node_ids[obj.asset_path.handle] = i
for obj, obj_proto in zip(saveable_view.nodes, proto.nodes):
_write_object_proto(obj, obj_proto, asset_file_def_index, node_ids)
extra_asset_dir = os.path.join(
compat.as_bytes(export_dir),
compat.as_bytes(constants.EXTRA_ASSETS_DIRECTORY))
file_io.recursive_create_dir(extra_asset_dir)
object_graph_filename = os.path.join(
extra_asset_dir, compat.as_bytes("object_graph.pb"))
file_io.write_string_to_file(object_graph_filename, proto.SerializeToString())
开发者ID:rmlarsen,项目名称:tensorflow,代码行数:25,代码来源:save.py
示例10: testFileWrite
def testFileWrite(self):
file_path = os.path.join(self.get_temp_dir(), "temp_file")
file_io.write_string_to_file(file_path, "testing")
self.assertTrue(file_io.file_exists(file_path))
file_contents = file_io.read_file_to_string(file_path)
self.assertEqual(b"testing", file_contents)
file_io.delete_file(file_path)
开发者ID:AI-MR-Related,项目名称:tensorflow,代码行数:7,代码来源:file_io_test.py
示例11: run_analysis
def run_analysis(args):
"""Builds an analysis file for training.
Uses BiqQuery tables to do the analysis.
Args:
args: command line args
Raises:
ValueError if schema contains unknown types.
"""
import google.datalab.bigquery as bq
if args.bigquery_table:
table = bq.Table(args.bigquery_table)
schema_list = table.schema._bq_schema
else:
schema_list = json.loads(
file_io.read_file_to_string(args.schema_file).decode())
table = bq.ExternalDataSource(
source=args.input_file_pattern,
schema=bq.Schema(schema_list))
# Check the schema is supported.
for col_schema in schema_list:
col_type = col_schema['type'].lower()
if col_type != 'string' and col_type != 'integer' and col_type != 'float':
raise ValueError('Schema contains an unsupported type %s.' % col_type)
run_numerical_analysis(table, schema_list, args)
run_categorical_analysis(table, schema_list, args)
# Save a copy of the schema to the output location.
file_io.write_string_to_file(
os.path.join(args.output_dir, SCHEMA_FILE),
json.dumps(schema_list, indent=2, separators=(',', ': ')))
开发者ID:googledatalab,项目名称:pydatalab,代码行数:35,代码来源:cloud_preprocess.py
示例12: create_object_test
def create_object_test():
"""Verifies file_io's object manipulation methods ."""
starttime = int(round(time.time() * 1000))
dir_name = "%s/tf_gcs_test_%s" % (FLAGS.gcs_bucket_url, starttime)
print("Creating dir %s." % dir_name)
file_io.create_dir(dir_name)
# Create a file in this directory.
file_name = "%s/test_file.txt" % dir_name
print("Creating file %s." % file_name)
file_io.write_string_to_file(file_name, "test file creation.")
list_files_pattern = "%s/test_file*.txt" % dir_name
print("Getting files matching pattern %s." % list_files_pattern)
files_list = file_io.get_matching_files(list_files_pattern)
print(files_list)
assert len(files_list) == 1
assert files_list[0] == file_name
# Cleanup test files.
print("Deleting file %s." % file_name)
file_io.delete_file(file_name)
# Delete directory.
print("Deleting directory %s." % dir_name)
file_io.delete_recursively(dir_name)
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:27,代码来源:gcs_smoke.py
示例13: testAssets
def testAssets(self):
export_dir = self._get_export_dir("test_assets")
builder = saved_model_builder.SavedModelBuilder(export_dir)
with self.test_session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
# Build an asset collection.
ignored_filepath = os.path.join(
compat.as_bytes(test.get_temp_dir()), compat.as_bytes("ignored.txt"))
file_io.write_string_to_file(ignored_filepath, "will be ignored")
asset_collection = self._build_asset_collection("hello42.txt",
"foo bar baz",
"asset_file_tensor")
builder.add_meta_graph_and_variables(
sess, ["foo"], assets_collection=asset_collection)
# Save the SavedModel to disk.
builder.save()
with self.test_session(graph=ops.Graph()) as sess:
foo_graph = loader.load(sess, ["foo"], export_dir)
self._validate_asset_collection(export_dir, foo_graph.collection_def,
"hello42.txt", "foo bar baz",
"asset_file_tensor:0")
ignored_asset_path = os.path.join(
compat.as_bytes(export_dir),
compat.as_bytes(constants.ASSETS_DIRECTORY),
compat.as_bytes("ignored.txt"))
self.assertFalse(file_io.file_exists(ignored_asset_path))
开发者ID:KiaraStarlab,项目名称:tensorflow,代码行数:32,代码来源:saved_model_test.py
示例14: _build_asset_collection
def _build_asset_collection(self, asset_file_name, asset_file_contents, asset_file_tensor_name):
asset_filepath = os.path.join(compat.as_bytes(tf.test.get_temp_dir()), compat.as_bytes(asset_file_name))
file_io.write_string_to_file(asset_filepath, asset_file_contents)
asset_file_tensor = tf.constant(asset_filepath, name=asset_file_tensor_name)
tf.add_to_collection(tf.GraphKeys.ASSET_FILEPATHS, asset_file_tensor)
asset_collection = tf.get_collection(tf.GraphKeys.ASSET_FILEPATHS)
return asset_collection
开发者ID:botonchou,项目名称:tensorflow,代码行数:7,代码来源:saved_model_test.py
示例15: test_make_transform_graph_images
def test_make_transform_graph_images(self):
print('Testing make_transform_graph with image_to_vec.' +
'It may take a few minutes because it needs to download a large inception checkpoint.')
def _open_and_encode_image(img_url):
with file_io.FileIO(img_url, 'r') as f:
img = Image.open(f).convert('RGB')
output = cStringIO.StringIO()
img.save(output, 'jpeg')
return base64.urlsafe_b64encode(output.getvalue())
try:
output_folder = tempfile.mkdtemp()
stats_file_path = os.path.join(output_folder, feature_transforms.STATS_FILE)
stats = {'column_stats': {}}
file_io.write_string_to_file(stats_file_path, json.dumps(stats))
schema = [{'name': 'img', 'type': 'STRING'}]
features = {'img': {'transform': 'image_to_vec', 'source_column': 'img'}}
img_string1 = _open_and_encode_image(
'gs://cloud-ml-data/img/flower_photos/daisy/15207766_fc2f1d692c_n.jpg')
img_string2 = _open_and_encode_image(
'gs://cloud-ml-data/img/flower_photos/dandelion/8980164828_04fbf64f79_n.jpg')
input_data = [img_string1, img_string2]
results = self._run_graph(output_folder, features, schema, stats, input_data)
embeddings = results['img']
self.assertEqual(len(embeddings), 2)
self.assertEqual(len(embeddings[0]), 2048)
self.assertEqual(embeddings[0].dtype, np.float32)
self.assertTrue(any(x != 0.0 for x in embeddings[1]))
finally:
shutil.rmtree(output_folder)
开发者ID:parthea,项目名称:pydatalab,代码行数:35,代码来源:test_feature_transforms.py
示例16: test_categorical
def test_categorical(self):
output_folder = tempfile.mkdtemp()
input_file_path = tempfile.mkstemp(dir=output_folder)[1]
try:
csv_file = ['red,apple', 'red,pepper', 'red,apple', 'blue,grape',
'blue,apple', 'green,pepper']
file_io.write_string_to_file(
input_file_path,
'\n'.join(csv_file))
schema = [{'name': 'color', 'type': 'STRING'},
{'name': 'type', 'type': 'STRING'}]
features = {'color': {'transform': 'one_hot', 'source_column': 'color'},
'type': {'transform': 'target'}}
feature_analysis.run_local_analysis(
output_folder, [input_file_path], schema, features)
stats = json.loads(
file_io.read_file_to_string(
os.path.join(output_folder, analyze.constant.STATS_FILE)).decode())
self.assertEqual(stats['column_stats']['color']['vocab_size'], 3)
# Color column.
vocab_str = file_io.read_file_to_string(
os.path.join(output_folder, analyze.constant.VOCAB_ANALYSIS_FILE % 'color'))
vocab = pd.read_csv(six.StringIO(vocab_str),
header=None,
names=['color', 'count'])
expected_vocab = pd.DataFrame(
{'color': ['red', 'blue', 'green'], 'count': [3, 2, 1]},
columns=['color', 'count'])
pd.util.testing.assert_frame_equal(vocab, expected_vocab)
finally:
shutil.rmtree(output_folder)
开发者ID:googledatalab,项目名称:pydatalab,代码行数:35,代码来源:test_analyze.py
示例17: write_graph
def write_graph(graph_def, logdir, name, as_text=True):
"""Writes a graph proto to a file.
The graph is written as a binary proto unless `as_text` is `True`.
```python
v = tf.Variable(0, name='my_variable')
sess = tf.Session()
tf.train.write_graph(sess.graph_def, '/tmp/my-model', 'train.pbtxt')
```
Args:
graph_def: A `GraphDef` protocol buffer.
logdir: Directory where to write the graph. This can refer to remote
filesystems, such as Google Cloud Storage (GCS).
name: Filename for the graph.
as_text: If `True`, writes the graph as an ASCII proto.
"""
# gcs does not have the concept of directory at the moment.
if not file_io.file_exists(logdir) and not logdir.startswith("gs:"):
file_io.recursive_create_dir(logdir)
path = os.path.join(logdir, name)
if as_text:
file_io.write_string_to_file(path, str(graph_def))
else:
file_io.write_string_to_file(path, graph_def.SerializeToString())
开发者ID:2020zyc,项目名称:tensorflow,代码行数:26,代码来源:training_util.py
示例18: test_numerics
def test_numerics(self):
test_folder = os.path.join(self._bucket_root, 'test_numerics')
input_file_path = os.path.join(test_folder, 'input.csv')
output_folder = os.path.join(test_folder, 'test_output')
file_io.recursive_create_dir(output_folder)
file_io.write_string_to_file(
input_file_path,
'\n'.join(['%s,%s' % (i, 10 * i + 0.5) for i in range(100)]))
schema = [{'name': 'col1', 'type': 'INTEGER'},
{'name': 'col2', 'type': 'FLOAT'}]
features = {'col1': {'transform': 'scale', 'source_column': 'col1'},
'col2': {'transform': 'identity', 'source_column': 'col2'}}
analyze.run_cloud_analysis(
output_dir=output_folder,
csv_file_pattern=input_file_path,
bigquery_table=None,
schema=schema,
inverted_features=analyze.invert_features(features))
stats = json.loads(
file_io.read_file_to_string(
os.path.join(output_folder, analyze.constant.STATS_FILE)).decode())
self.assertEqual(stats['num_examples'], 100)
col = stats['column_stats']['col1']
self.assertAlmostEqual(col['max'], 99.0)
self.assertAlmostEqual(col['min'], 0.0)
self.assertAlmostEqual(col['mean'], 49.5)
col = stats['column_stats']['col2']
self.assertAlmostEqual(col['max'], 990.5)
self.assertAlmostEqual(col['min'], 0.5)
self.assertAlmostEqual(col['mean'], 495.5)
开发者ID:javiervicho,项目名称:pydatalab,代码行数:35,代码来源:test_analyze.py
示例19: testCopy
def testCopy(self):
file_path = os.path.join(self._base_dir, "temp_file")
file_io.write_string_to_file(file_path, "testing")
copy_path = os.path.join(self._base_dir, "copy_file")
file_io.copy(file_path, copy_path)
self.assertTrue(file_io.file_exists(copy_path))
self.assertEqual(b"testing", file_io.read_file_to_string(file_path))
开发者ID:AriaAsuka,项目名称:tensorflow,代码行数:7,代码来源:file_io_test.py
示例20: testCreateRecursiveDir
def testCreateRecursiveDir(self):
dir_path = os.path.join(self._base_dir, "temp_dir/temp_dir1/temp_dir2")
file_io.recursive_create_dir(dir_path)
file_path = os.path.join(dir_path, "temp_file")
file_io.write_string_to_file(file_path, "testing")
self.assertTrue(file_io.file_exists(file_path))
file_io.delete_recursively(os.path.join(self._base_dir, "temp_dir"))
self.assertFalse(file_io.file_exists(file_path))
开发者ID:AriaAsuka,项目名称:tensorflow,代码行数:8,代码来源:file_io_test.py
注:本文中的tensorflow.python.lib.io.file_io.write_string_to_file函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论