• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python file_io.create_dir函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.lib.io.file_io.create_dir函数的典型用法代码示例。如果您正苦于以下问题:Python create_dir函数的具体用法?Python create_dir怎么用?Python create_dir使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了create_dir函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: save

  def save(self, as_text=False):
    """Writes a `SavedModel` protocol buffer to disk.

    The function writes the SavedModel protocol buffer to the export directory
    in serialized format.

    Args:
      as_text: Writes the SavedModel protocol buffer in text format to disk.

    Returns:
      The path to which the SavedModel protocol buffer was written.
    """
    if not file_io.file_exists(self._export_dir):
      file_io.create_dir(self._export_dir)

    if as_text:
      path = os.path.join(
          compat.as_bytes(self._export_dir),
          compat.as_bytes(constants.SAVED_MODEL_FILENAME_PBTXT))
      file_io.write_string_to_file(path, str(self._saved_model))
    else:
      path = os.path.join(
          compat.as_bytes(self._export_dir),
          compat.as_bytes(constants.SAVED_MODEL_FILENAME_PB))
      file_io.write_string_to_file(path, self._saved_model.SerializeToString())
    tf_logging.info("SavedModel written to: %s", path)

    return path
开发者ID:apollos,项目名称:tensorflow,代码行数:28,代码来源:builder.py


示例2: _save_and_write_assets

  def _save_and_write_assets(self, assets_collection_to_add=None):
    """Saves asset to the meta graph and writes asset files to disk.

    Args:
      assets_collection_to_add: The collection where the asset paths are setup.
    """
    asset_source_filepath_list = self._save_assets(assets_collection_to_add)

    # Return if there are no assets to write.
    if len(asset_source_filepath_list) is 0:
      tf_logging.info("No assets to write.")
      return

    assets_destination_dir = os.path.join(
        compat.as_bytes(self._export_dir),
        compat.as_bytes(constants.ASSETS_DIRECTORY))

    if not file_io.file_exists(assets_destination_dir):
      file_io.create_dir(assets_destination_dir)

    # Copy each asset from source path to destination path.
    for asset_source_filepath in asset_source_filepath_list:
      asset_source_filename = os.path.basename(asset_source_filepath)

      asset_destination_filepath = os.path.join(
          compat.as_bytes(assets_destination_dir),
          compat.as_bytes(asset_source_filename))
      file_io.copy(
          asset_source_filepath, asset_destination_filepath, overwrite=True)

    tf_logging.info("Assets written to: %s", assets_destination_dir)
开发者ID:apollos,项目名称:tensorflow,代码行数:31,代码来源:builder.py


示例3: create_dir_test

def create_dir_test():
    """Verifies file_io directory handling methods ."""

    starttime = int(round(time.time() * 1000))
    dir_name = "%s/tf_gcs_test_%s" % (FLAGS.gcs_bucket_url, starttime)
    print("Creating dir %s" % dir_name)
    file_io.create_dir(dir_name)
    elapsed = int(round(time.time() * 1000)) - starttime
    print("Created directory in: %d milliseconds" % elapsed)
    # Check that the directory exists.
    dir_exists = file_io.is_directory(dir_name)
    print("%s directory exists: %s" % (dir_name, dir_exists))

    # List contents of just created directory.
    print("Listing directory %s." % dir_name)
    starttime = int(round(time.time() * 1000))
    print(file_io.list_directory(dir_name))
    elapsed = int(round(time.time() * 1000)) - starttime
    print("Listed directory %s in %s milliseconds" % (dir_name, elapsed))

    # Delete directory.
    print("Deleting directory %s." % dir_name)
    starttime = int(round(time.time() * 1000))
    file_io.delete_recursively(dir_name)
    elapsed = int(round(time.time() * 1000)) - starttime
    print("Deleted directory %s in %s milliseconds" % (dir_name, elapsed))
开发者ID:paolodedios,项目名称:tensorflow,代码行数:26,代码来源:gcs_smoke.py


示例4: create_object_test

def create_object_test():
  """Verifies file_io's object manipulation methods ."""
  starttime = int(round(time.time() * 1000))
  dir_name = "%s/tf_gcs_test_%s" % (FLAGS.gcs_bucket_url, starttime)
  print("Creating dir %s." % dir_name)
  file_io.create_dir(dir_name)

  # Create a file in this directory.
  file_name = "%s/test_file.txt" % dir_name
  print("Creating file %s." % file_name)
  file_io.write_string_to_file(file_name, "test file creation.")

  list_files_pattern = "%s/test_file*.txt" % dir_name
  print("Getting files matching pattern %s." % list_files_pattern)
  files_list = file_io.get_matching_files(list_files_pattern)
  print(files_list)

  assert len(files_list) == 1
  assert files_list[0] == file_name

  # Cleanup test files.
  print("Deleting file %s." % file_name)
  file_io.delete_file(file_name)

  # Delete directory.
  print("Deleting directory %s." % dir_name)
  file_io.delete_recursively(dir_name)
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:27,代码来源:gcs_smoke.py


示例5: setUpClass

  def setUpClass(cls):

    # Set up dirs.
    cls.working_dir = tempfile.mkdtemp()
    cls.source_dir = os.path.join(cls.working_dir, 'source')
    cls.analysis_dir = os.path.join(cls.working_dir, 'analysis')
    cls.output_dir = os.path.join(cls.working_dir, 'output')
    file_io.create_dir(cls.source_dir)

    # Make test image files.
    img1_file = os.path.join(cls.source_dir, 'img1.jpg')
    image1 = Image.new('RGB', size=(300, 300), color=(155, 0, 0))
    image1.save(img1_file)
    img2_file = os.path.join(cls.source_dir, 'img2.jpg')
    image2 = Image.new('RGB', size=(50, 50), color=(125, 240, 0))
    image2.save(img2_file)
    img3_file = os.path.join(cls.source_dir, 'img3.jpg')
    image3 = Image.new('RGB', size=(800, 600), color=(33, 55, 77))
    image3.save(img3_file)

    # Download inception checkpoint. Note that gs url doesn't work because
    # we may not have gcloud signed in when running the test.
    url = ('https://storage.googleapis.com/cloud-ml-data/img/' +
           'flower_photos/inception_v3_2016_08_28.ckpt')
    checkpoint_path = os.path.join(cls.working_dir, "checkpoint")
    response = urlopen(url)
    with open(checkpoint_path, 'wb') as f:
      f.write(response.read())

    # Make csv input file
    cls.csv_input_filepath = os.path.join(cls.source_dir, 'input.csv')
    file_io.write_string_to_file(
        cls.csv_input_filepath,
        '1,Monday,23.0,red blue,%s\n' % img1_file +
        '0,Friday,18.0,green,%s\n' % img2_file +
        '0,Sunday,12.0,green red blue green,%s\n' % img3_file)

    # Call analyze.py to create analysis results.
    schema = [{'name': 'target_col', 'type': 'FLOAT'},
              {'name': 'cat_col', 'type': 'STRING'},
              {'name': 'num_col', 'type': 'FLOAT'},
              {'name': 'text_col', 'type': 'STRING'},
              {'name': 'img_col', 'type': 'STRING'}]
    schema_file = os.path.join(cls.source_dir, 'schema.json')
    file_io.write_string_to_file(schema_file, json.dumps(schema))
    features = {'target_col': {'transform': 'target'},
                'cat_col': {'transform': 'one_hot'},
                'num_col': {'transform': 'identity'},
                'text_col': {'transform': 'multi_hot'},
                'img_col': {'transform': 'image_to_vec', 'checkpoint': checkpoint_path}}
    features_file = os.path.join(cls.source_dir, 'features.json')
    file_io.write_string_to_file(features_file, json.dumps(features))
    cmd = ['python ' + os.path.join(CODE_PATH, 'analyze.py'),
           '--output=' + cls.analysis_dir,
           '--csv=' + cls.csv_input_filepath,
           '--schema=' + schema_file,
           '--features=' + features_file]
    subprocess.check_call(' '.join(cmd), shell=True)
开发者ID:googledatalab,项目名称:pydatalab,代码行数:58,代码来源:test_transform.py


示例6: testGetMatchingFiles

 def testGetMatchingFiles(self):
     dir_path = os.path.join(self._base_dir, "temp_dir")
     file_io.create_dir(dir_path)
     files = ["file1.txt", "file2.txt", "file3.txt"]
     for name in files:
         file_path = os.path.join(dir_path, name)
         file_io.FileIO(file_path, mode="w").write("testing")
     expected_match = [os.path.join(dir_path, name) for name in files]
     self.assertItemsEqual(file_io.get_matching_files(os.path.join(dir_path, "file*.txt")), expected_match)
     file_io.delete_recursively(dir_path)
     self.assertFalse(file_io.file_exists(os.path.join(dir_path, "file3.txt")))
开发者ID:pronobis,项目名称:tensorflow,代码行数:11,代码来源:file_io_test.py


示例7: testIsDirectory

 def testIsDirectory(self):
   dir_path = os.path.join(self._base_dir, "test_dir")
   # Failure for a non-existing dir.
   with self.assertRaises(errors.NotFoundError):
     file_io.is_directory(dir_path)
   file_io.create_dir(dir_path)
   self.assertTrue(file_io.is_directory(dir_path))
   file_path = os.path.join(dir_path, "test_file")
   file_io.FileIO(file_path, mode="w").write("test")
   # False for a file.
   self.assertFalse(file_io.is_directory(file_path))
开发者ID:JamesFysh,项目名称:tensorflow,代码行数:11,代码来源:file_io_test.py


示例8: end

    def end(self, session=None):
        super(ExportLastModelMonitor, self).end(session)

        file_io.recursive_create_dir(self._dest)
        _recursive_copy(self.last_export_dir, self._dest)

        if self._additional_assets:
            # TODO(rhaertel): use the actual assets directory. For now, metadata.yaml
            # must be a sibling of the export.meta file.
            assets_dir = self._dest
            file_io.create_dir(assets_dir)
            _copy_all(self._additional_assets, assets_dir)
开发者ID:obulpathi,项目名称:cloud,代码行数:12,代码来源:util.py


示例9: setUpClass

  def setUpClass(cls):

    # Set up dirs.
    cls.working_dir = tempfile.mkdtemp()
    cls.source_dir = os.path.join(cls.working_dir, 'source')
    cls.analysis_dir = os.path.join(cls.working_dir, 'analysis')
    cls.output_dir = os.path.join(cls.working_dir, 'output')
    file_io.create_dir(cls.source_dir)

    # Make test image files.
    img1_file = os.path.join(cls.source_dir, 'img1.jpg')
    image1 = Image.new('RGBA', size=(300, 300), color=(155, 0, 0))
    image1.save(img1_file)
    img2_file = os.path.join(cls.source_dir, 'img2.jpg')
    image2 = Image.new('RGBA', size=(50, 50), color=(125, 240, 0))
    image2.save(img2_file)
    img3_file = os.path.join(cls.source_dir, 'img3.jpg')
    image3 = Image.new('RGBA', size=(800, 600), color=(33, 55, 77))
    image3.save(img3_file)

    # Make csv input file
    cls.csv_input_filepath = os.path.join(cls.source_dir, 'input.csv')
    file_io.write_string_to_file(
        cls.csv_input_filepath,
        '1,1,Monday,23.0,%s\n' % img1_file +
        '2,0,Friday,18.0,%s\n' % img2_file +
        '3,0,Sunday,12.0,%s\n' % img3_file)

    # Call analyze.py to create analysis results.
    schema = [{'name': 'key_col', 'type': 'INTEGER'},
              {'name': 'target_col', 'type': 'FLOAT'},
              {'name': 'cat_col', 'type': 'STRING'},
              {'name': 'num_col', 'type': 'FLOAT'},
              {'name': 'img_col', 'type': 'STRING'}]
    schema_file = os.path.join(cls.source_dir, 'schema.json')
    file_io.write_string_to_file(schema_file, json.dumps(schema))
    features = {'key_col': {'transform': 'key'},
                'target_col': {'transform': 'target'},
                'cat_col': {'transform': 'one_hot'},
                'num_col': {'transform': 'identity'},
                'img_col': {'transform': 'image_to_vec'}}
    features_file = os.path.join(cls.source_dir, 'features.json')
    file_io.write_string_to_file(features_file, json.dumps(features))
    cmd = ['python ' + os.path.join(CODE_PATH, 'analyze.py'),
           '--output=' + cls.analysis_dir,
           '--csv=' + cls.csv_input_filepath,
           '--schema=' + schema_file,
           '--features=' + features_file]
    subprocess.check_call(' '.join(cmd), shell=True)

    # Setup a temp GCS bucket.
    cls.bucket_root = 'gs://temp_mltoolbox_test_%s' % uuid.uuid4().hex
    subprocess.check_call('gsutil mb %s' % cls.bucket_root, shell=True)
开发者ID:parthea,项目名称:pydatalab,代码行数:53,代码来源:test_transform.py


示例10: end

  def end(self, session=None):
    super(ExportLastModelMonitor, self).end(session)
    # Recursively copy the last location export dir from the exporter into the
    # main export location.
    file_io.recursive_create_dir(self._final_model_location)
    _recursive_copy(self.last_export_dir, self._final_model_location)

    if self._additional_assets:
      # TODO(rhaertel): use the actual assets directory. For now, metadata.json
      # must be a sibling of the export.meta file.
      assets_dir = self._final_model_location
      file_io.create_dir(assets_dir)
      _copy_all(self._additional_assets, assets_dir)
开发者ID:cottrell,项目名称:notebooks,代码行数:13,代码来源:util.py


示例11: testListDirectory

 def testListDirectory(self):
   dir_path = os.path.join(self._base_dir, "test_dir")
   file_io.create_dir(dir_path)
   files = [b"file1.txt", b"file2.txt", b"file3.txt"]
   for name in files:
     file_path = os.path.join(dir_path, compat.as_str_any(name))
     file_io.write_string_to_file(file_path, "testing")
   subdir_path = os.path.join(dir_path, "sub_dir")
   file_io.create_dir(subdir_path)
   subdir_file_path = os.path.join(subdir_path, "file4.txt")
   file_io.write_string_to_file(subdir_file_path, "testing")
   dir_list = file_io.list_directory(dir_path)
   self.assertItemsEqual(files + [b"sub_dir"], dir_list)
开发者ID:AriaAsuka,项目名称:tensorflow,代码行数:13,代码来源:file_io_test.py


示例12: testIsDirectory

 def testIsDirectory(self):
   dir_path = os.path.join(self._base_dir, "test_dir")
   # Failure for a non-existing dir.
   self.assertFalse(file_io.is_directory(dir_path))
   file_io.create_dir(dir_path)
   self.assertTrue(file_io.is_directory(dir_path))
   file_path = os.path.join(dir_path, "test_file")
   file_io.FileIO(file_path, mode="w").write("test")
   # False for a file.
   self.assertFalse(file_io.is_directory(file_path))
   # Test that the value returned from `stat()` has `is_directory` set.
   file_statistics = file_io.stat(dir_path)
   self.assertTrue(file_statistics.is_directory)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:13,代码来源:file_io_test.py


示例13: testListDirectory

 def testListDirectory(self):
   dir_path = os.path.join(self._base_dir, "test_dir")
   file_io.create_dir(dir_path)
   files = ["file1.txt", "file2.txt", "file3.txt"]
   for name in files:
     file_path = os.path.join(dir_path, name)
     file_io.FileIO(file_path, mode="w").write("testing")
   subdir_path = os.path.join(dir_path, "sub_dir")
   file_io.create_dir(subdir_path)
   subdir_file_path = os.path.join(subdir_path, "file4.txt")
   file_io.FileIO(subdir_file_path, mode="w").write("testing")
   dir_list = file_io.list_directory(dir_path)
   self.assertItemsEqual(files + ["sub_dir"], dir_list)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:13,代码来源:file_io_test.py


示例14: testGetMatchingFiles

 def testGetMatchingFiles(self):
   dir_path = os.path.join(self.get_temp_dir(), "temp_dir")
   file_io.create_dir(dir_path)
   files = ["file1.txt", "file2.txt", "file3.txt"]
   for name in files:
     file_path = os.path.join(dir_path, name)
     file_io.write_string_to_file(file_path, "testing")
   expected_match = [os.path.join(dir_path, name) for name in files]
   self.assertItemsEqual(file_io.get_matching_files(os.path.join(dir_path,
                                                                 "file*.txt")),
                         expected_match)
   for name in files:
     file_path = os.path.join(dir_path, name)
     file_io.delete_file(file_path)
开发者ID:AI-MR-Related,项目名称:tensorflow,代码行数:14,代码来源:file_io_test.py


示例15: _recursive_copy

def _recursive_copy(src_dir, dest_dir):
  """Copy the contents of src_dir into the folder dest_dir.

  When called, dest_dir should exist.
  """
  for dir_name, sub_dirs, leaf_files in file_io.walk(src_dir):
    # copy all the files over
    for leaf_file in leaf_files:
      leaf_file_path = os.path.join(dir_name, leaf_file)
      _copy_all([leaf_file_path], dest_dir)

    # Now make all the folders.
    for sub_dir in sub_dirs:
      file_io.create_dir(os.path.join(dest_dir, sub_dir))
开发者ID:cottrell,项目名称:notebooks,代码行数:14,代码来源:util.py


示例16: __init__

  def __init__(self, export_dir):
    self._saved_model = saved_model_pb2.SavedModel()
    self._saved_model.saved_model_schema_version = (
        constants.SAVED_MODEL_SCHEMA_VERSION)

    self._export_dir = export_dir
    if not file_io.file_exists(export_dir):
      file_io.create_dir(self._export_dir)

    # Boolean to track whether variables and assets corresponding to the
    # SavedModel have been saved. Specifically, the first meta graph to be added
    # MUST use the add_meta_graph_and_variables() API. Subsequent add operations
    # on the SavedModel MUST use the add_meta_graph() API which does not save
    # weights.
    self._has_saved_variables = False
开发者ID:apollos,项目名称:tensorflow,代码行数:15,代码来源:builder.py


示例17: _setupWalkDirectories

 def _setupWalkDirectories(self, dir_path):
     # Creating a file structure as follows
     # test_dir -> file: file1.txt; dirs: subdir1_1, subdir1_2, subdir1_3
     # subdir1_1 -> file: file3.txt
     # subdir1_2 -> dir: subdir2
     file_io.create_dir(dir_path)
     file_io.FileIO(os.path.join(dir_path, "file1.txt"), mode="w").write("testing")
     sub_dirs1 = ["subdir1_1", "subdir1_2", "subdir1_3"]
     for name in sub_dirs1:
         file_io.create_dir(os.path.join(dir_path, name))
     file_io.FileIO(os.path.join(dir_path, "subdir1_1/file2.txt"), mode="w").write("testing")
     file_io.create_dir(os.path.join(dir_path, "subdir1_2/subdir2"))
开发者ID:pronobis,项目名称:tensorflow,代码行数:12,代码来源:file_io_test.py


示例18: testMatchingFilesPermission

 def testMatchingFilesPermission(self):
   # Create top level directory test_dir.
   dir_path = os.path.join(self._base_dir, "test_dir")
   file_io.create_dir(dir_path)
   # Create second level directories `noread` and `any`.
   noread_path = os.path.join(dir_path, "noread")
   file_io.create_dir(noread_path)
   any_path = os.path.join(dir_path, "any")
   file_io.create_dir(any_path)
   files = ["file1.txt", "file2.txt", "file3.txt"]
   for name in files:
     file_path = os.path.join(any_path, name)
     file_io.FileIO(file_path, mode="w").write("testing")
   file_path = os.path.join(noread_path, "file4.txt")
   file_io.FileIO(file_path, mode="w").write("testing")
   # Change noread to noread access.
   os.chmod(noread_path, 0)
   expected_match = [os.path.join(any_path, name) for name in files]
   self.assertItemsEqual(
       file_io.get_matching_files(os.path.join(dir_path, "*", "file*.txt")),
       expected_match)
   # Change noread back so that it could be cleaned during tearDown.
   os.chmod(noread_path, 0o777)
开发者ID:aritratony,项目名称:tensorflow,代码行数:23,代码来源:file_io_test.py


示例19: setUp

 def setUp(self):
   self._base_dir = os.path.join(self.get_temp_dir(), "base_dir")
   file_io.create_dir(self._base_dir)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:3,代码来源:file_io_test.py


示例20: run_training


#.........这里部分代码省略.........

    # To be able to extract the id, we need to add the identity function.
    keys = tf.identity(keys_placeholder)

    # The prediction will be the index in logits with the highest score.
    # We also use a softmax operation to produce a probability distribution
    # over all possible digits.
    prediction = tf.argmax(logits, 1)
    scores = tf.nn.softmax(logits)

    # Mark the outputs.
    outputs = {'key': keys.name,
               'prediction': prediction.name,
               'scores': scores.name}
    tf.add_to_collection('outputs', json.dumps(outputs))

    # Add to the Graph the Ops that calculate and apply gradients.
    train_op = mnist.training(loss, FLAGS.learning_rate)

    # Add the Op to compare the logits to the labels during evaluation.
    eval_correct = mnist.evaluation(logits, labels_placeholder)

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.merge_all_summaries()

    # Add the variable initializer Op.
    init = tf.initialize_all_variables()

    # Create a saver for writing training checkpoints.
    saver = tf.train.Saver()

    # Create a session for running Ops on the Graph.
    sess = tf.Session()

    # Instantiate a SummaryWriter to output summaries and the Graph.
    summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph)

    # And then after everything is built:

    # Run the Op to initialize the variables.
    sess.run(init)

    # Start the training loop.
    for step in xrange(FLAGS.max_steps):
      start_time = time.time()

      # Fill a feed dictionary with the actual set of images and labels
      # for this particular training step.
      feed_dict = fill_feed_dict(data_sets.train,
                                 images_placeholder,
                                 labels_placeholder)

      # Run one step of the model.  The return values are the activations
      # from the `train_op` (which is discarded) and the `loss` Op.  To
      # inspect the values of your Ops or variables, you may include them
      # in the list passed to sess.run() and the value tensors will be
      # returned in the tuple from the call.
      _, loss_value = sess.run([train_op, loss],
                               feed_dict=feed_dict)

      duration = time.time() - start_time

      # Write the summaries and print an overview fairly often.
      if step % 100 == 0:
        # Print status to stdout.
        print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration))
        # Update the events file.
        summary_str = sess.run(summary_op, feed_dict=feed_dict)
        summary_writer.add_summary(summary_str, step)
        summary_writer.flush()

      # Save a checkpoint and evaluate the model periodically.
      if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:
        checkpoint_file = os.path.join(FLAGS.train_dir, 'checkpoint')
        saver.save(sess, checkpoint_file, global_step=step)
        # Evaluate against the training set.
        print('Training Data Eval:')
        do_eval(sess,
                eval_correct,
                images_placeholder,
                labels_placeholder,
                data_sets.train)
        # Evaluate against the validation set.
        print('Validation Data Eval:')
        do_eval(sess,
                eval_correct,
                images_placeholder,
                labels_placeholder,
                data_sets.validation)
        # Evaluate against the test set.
        print('Test Data Eval:')
        do_eval(sess,
                eval_correct,
                images_placeholder,
                labels_placeholder,
                data_sets.test)

    # Export the model so that it can be loaded and used later for predictions.
    file_io.create_dir(FLAGS.model_dir)
    saver.save(sess, os.path.join(FLAGS.model_dir, 'export'))
开发者ID:obulpathi,项目名称:cloud,代码行数:101,代码来源:task.py



注:本文中的tensorflow.python.lib.io.file_io.create_dir函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python file_io.delete_file函数代码示例发布时间:2022-05-27
下一篇:
Python file_io.copy函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap