• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python file_io.copy函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.lib.io.file_io.copy函数的典型用法代码示例。如果您正苦于以下问题:Python copy函数的具体用法?Python copy怎么用?Python copy使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了copy函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _save_and_write_assets

  def _save_and_write_assets(self, assets_collection_to_add=None):
    """Saves asset to the meta graph and writes asset files to disk.

    Args:
      assets_collection_to_add: The collection where the asset paths are setup.
    """
    asset_source_filepath_list = self._save_assets(assets_collection_to_add)

    # Return if there are no assets to write.
    if len(asset_source_filepath_list) is 0:
      tf_logging.info("No assets to write.")
      return

    assets_destination_dir = os.path.join(
        compat.as_bytes(self._export_dir),
        compat.as_bytes(constants.ASSETS_DIRECTORY))

    if not file_io.file_exists(assets_destination_dir):
      file_io.recursive_create_dir(assets_destination_dir)

    # Copy each asset from source path to destination path.
    for asset_source_filepath in asset_source_filepath_list:
      asset_source_filename = os.path.basename(asset_source_filepath)

      asset_destination_filepath = os.path.join(
          compat.as_bytes(assets_destination_dir),
          compat.as_bytes(asset_source_filename))
      file_io.copy(
          asset_source_filepath, asset_destination_filepath, overwrite=True)

    tf_logging.info("Assets written to: %s", assets_destination_dir)
开发者ID:Qstar,项目名称:tensorflow,代码行数:31,代码来源:builder.py


示例2: testCopyOverwriteFalse

 def testCopyOverwriteFalse(self):
   file_path = os.path.join(self._base_dir, "temp_file")
   file_io.write_string_to_file(file_path, "testing")
   copy_path = os.path.join(self._base_dir, "copy_file")
   file_io.write_string_to_file(copy_path, "copy")
   with self.assertRaises(errors.AlreadyExistsError):
     file_io.copy(file_path, copy_path, overwrite=False)
开发者ID:AriaAsuka,项目名称:tensorflow,代码行数:7,代码来源:file_io_test.py


示例3: testCopy

 def testCopy(self):
   file_path = os.path.join(self._base_dir, "temp_file")
   file_io.FileIO(file_path, mode="w").write("testing")
   copy_path = os.path.join(self._base_dir, "copy_file")
   file_io.copy(file_path, copy_path)
   self.assertTrue(file_io.file_exists(copy_path))
   self.assertEqual(b"testing", file_io.read_file_to_string(file_path))
开发者ID:JamesFysh,项目名称:tensorflow,代码行数:7,代码来源:file_io_test.py


示例4: _save_and_write_assets

  def _save_and_write_assets(self, assets_collection_to_add=None):
    """Saves asset to the meta graph and writes asset files to disk.

    Args:
      assets_collection_to_add: The collection where the asset paths are setup.
    """
    asset_filename_map = _maybe_save_assets(assets_collection_to_add)

    # Return if there are no assets to write.
    if not asset_filename_map:
      tf_logging.info("No assets to write.")
      return

    assets_destination_dir = saved_model_utils.get_or_create_assets_dir(
        self._export_dir)

    # Copy each asset from source path to destination path.
    for asset_basename, asset_source_filepath in asset_filename_map.items():
      asset_destination_filepath = os.path.join(
          compat.as_bytes(assets_destination_dir),
          compat.as_bytes(asset_basename))

      # Only copy the asset file to the destination if it does not already
      # exist. This is to ensure that an asset with the same name defined as
      # part of multiple graphs is only copied the first time.
      if not file_io.file_exists(asset_destination_filepath):
        file_io.copy(asset_source_filepath, asset_destination_filepath)

    tf_logging.info("Assets written to: %s",
                    compat.as_text(assets_destination_dir))
开发者ID:AnishShah,项目名称:tensorflow,代码行数:30,代码来源:builder_impl.py


示例5: testCopyOverwriteFalse

 def testCopyOverwriteFalse(self):
   file_path = os.path.join(self._base_dir, "temp_file")
   file_io.FileIO(file_path, mode="w").write("testing")
   copy_path = os.path.join(self._base_dir, "copy_file")
   file_io.FileIO(copy_path, mode="w").write("copy")
   with self.assertRaises(errors.AlreadyExistsError):
     file_io.copy(file_path, copy_path, overwrite=False)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:7,代码来源:file_io_test.py


示例6: _save_and_write_assets

  def _save_and_write_assets(self, assets_collection_to_add=None):
    """Saves asset to the meta graph and writes asset files to disk.

    Args:
      assets_collection_to_add: The collection where the asset paths are setup.
    """
    asset_source_filepath_list = _maybe_save_assets(assets_collection_to_add)

    # Return if there are no assets to write.
    if len(asset_source_filepath_list) is 0:
      tf_logging.info("No assets to write.")
      return

    assets_destination_dir = os.path.join(
        compat.as_bytes(self._export_dir),
        compat.as_bytes(constants.ASSETS_DIRECTORY))

    if not file_io.file_exists(assets_destination_dir):
      file_io.recursive_create_dir(assets_destination_dir)

    # Copy each asset from source path to destination path.
    for asset_source_filepath in asset_source_filepath_list:
      asset_source_filename = os.path.basename(asset_source_filepath)

      asset_destination_filepath = os.path.join(
          compat.as_bytes(assets_destination_dir),
          compat.as_bytes(asset_source_filename))

      # Only copy the asset file to the destination if it does not already
      # exist. This is to ensure that an asset with the same name defined as
      # part of multiple graphs is only copied the first time.
      if not file_io.file_exists(asset_destination_filepath):
        file_io.copy(asset_source_filepath, asset_destination_filepath)

    tf_logging.info("Assets written to: %s", assets_destination_dir)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:35,代码来源:builder_impl.py


示例7: testCopyOverwrite

 def testCopyOverwrite(self):
   file_path = os.path.join(self._base_dir, "temp_file")
   file_io.write_string_to_file(file_path, "testing")
   copy_path = os.path.join(self._base_dir, "copy_file")
   file_io.write_string_to_file(copy_path, "copy")
   file_io.copy(file_path, copy_path, overwrite=True)
   self.assertTrue(file_io.file_exists(copy_path))
   self.assertEqual(b"testing", file_io.read_file_to_string(file_path))
开发者ID:AriaAsuka,项目名称:tensorflow,代码行数:8,代码来源:file_io_test.py


示例8: testCopyOverwrite

 def testCopyOverwrite(self):
   file_path = os.path.join(self._base_dir, "temp_file")
   file_io.FileIO(file_path, mode="w").write("testing")
   copy_path = os.path.join(self._base_dir, "copy_file")
   file_io.FileIO(copy_path, mode="w").write("copy")
   file_io.copy(file_path, copy_path, overwrite=True)
   self.assertTrue(file_io.file_exists(copy_path))
   self.assertEqual("testing", file_io.FileIO(file_path, mode="r").read())
开发者ID:1000sprites,项目名称:tensorflow,代码行数:8,代码来源:file_io_test.py


示例9: testCopy

 def testCopy(self):
   file_path = os.path.join(self._base_dir, "temp_file")
   file_io.FileIO(file_path, mode="w").write("testing")
   copy_path = os.path.join(self._base_dir, "copy_file")
   file_io.copy(file_path, copy_path)
   self.assertTrue(file_io.file_exists(copy_path))
   f = file_io.FileIO(file_path, mode="r")
   self.assertEqual("testing", f.read())
   self.assertEqual(7, f.tell())
开发者ID:1000sprites,项目名称:tensorflow,代码行数:9,代码来源:file_io_test.py


示例10: testCopy

 def testCopy(self):
   file_path = os.path.join(self.get_temp_dir(), "temp_file")
   file_io.write_string_to_file(file_path, "testing")
   copy_path = os.path.join(self.get_temp_dir(), "copy_file")
   file_io.copy(file_path, copy_path)
   self.assertTrue(file_io.file_exists(copy_path))
   self.assertEqual(b"testing", file_io.read_file_to_string(file_path))
   file_io.delete_file(file_path)
   file_io.delete_file(copy_path)
开发者ID:AI-MR-Related,项目名称:tensorflow,代码行数:9,代码来源:file_io_test.py


示例11: preprocess

  def preprocess(train_dataset, output_dir, eval_dataset, checkpoint, pipeline_option):
    """Preprocess data in Cloud with DataFlow."""

    import apache_beam as beam
    import google.datalab.utils
    from . import _preprocess

    if checkpoint is None:
      checkpoint = _util._DEFAULT_CHECKPOINT_GSURL

    job_name = ('preprocess-image-classification-' +
                datetime.datetime.now().strftime('%y%m%d-%H%M%S'))

    staging_package_url = _util.repackage_to_staging(output_dir)
    tmpdir = tempfile.mkdtemp()
    # suppress DataFlow warnings about wheel package as extra package.
    original_level = logging.getLogger().getEffectiveLevel()
    logging.getLogger().setLevel(logging.ERROR)
    try:
      # Workaround for DataFlow 2.0, which doesn't work well with extra packages in GCS.
      # Remove when the issue is fixed and new version of DataFlow is included in Datalab.
      extra_packages = [staging_package_url, _TF_GS_URL, _PROTOBUF_GS_URL]
      local_packages = [os.path.join(tmpdir, os.path.basename(p))
                        for p in extra_packages]
      for source, dest in zip(extra_packages, local_packages):
        file_io.copy(source, dest, overwrite=True)

      options = {
          'staging_location': os.path.join(output_dir, 'tmp', 'staging'),
          'temp_location': os.path.join(output_dir, 'tmp'),
          'job_name': job_name,
          'project': _util.default_project(),
          'extra_packages': local_packages,
          'teardown_policy': 'TEARDOWN_ALWAYS',
          'no_save_main_session': True
      }
      if pipeline_option is not None:
        options.update(pipeline_option)

      opts = beam.pipeline.PipelineOptions(flags=[], **options)
      p = beam.Pipeline('DataflowRunner', options=opts)
      _preprocess.configure_pipeline(p, train_dataset, eval_dataset,
                                     checkpoint, output_dir, job_name)
      job_results = p.run()
    finally:
      shutil.rmtree(tmpdir)
      logging.getLogger().setLevel(original_level)

    if (_util.is_in_IPython()):
      import IPython
      dataflow_url = 'https://console.developers.google.com/dataflow?project=%s' % \
                     _util.default_project()
      html = 'Job "%s" submitted.' % job_name
      html += '<p>Click <a href="%s" target="_blank">here</a> to track preprocessing job. <br/>' \
          % dataflow_url
      IPython.display.display_html(html, raw=True)
    return google.datalab.utils.DataflowJob(job_results)
开发者ID:parthea,项目名称:pydatalab,代码行数:57,代码来源:_cloud.py


示例12: batch_predict

  def batch_predict(dataset, model_dir, output_csv, output_bq_table, pipeline_option):
    """Batch predict running in cloud."""

    import apache_beam as beam
    import google.datalab.utils
    from . import _predictor

    if output_csv is None and output_bq_table is None:
      raise ValueError('output_csv and output_bq_table cannot both be None.')
    if 'temp_location' not in pipeline_option:
      raise ValueError('"temp_location" is not set in cloud.')

    job_name = ('batch-predict-image-classification-' +
                datetime.datetime.now().strftime('%y%m%d-%H%M%S'))
    staging_package_url = _util.repackage_to_staging(pipeline_option['temp_location'])
    tmpdir = tempfile.mkdtemp()
    # suppress DataFlow warnings about wheel package as extra package.
    original_level = logging.getLogger().getEffectiveLevel()
    logging.getLogger().setLevel(logging.ERROR)
    try:
      # Workaround for DataFlow 2.0, which doesn't work well with extra packages in GCS.
      # Remove when the issue is fixed and new version of DataFlow is included in Datalab.
      extra_packages = [staging_package_url, _TF_GS_URL, _PROTOBUF_GS_URL]
      local_packages = [os.path.join(tmpdir, os.path.basename(p))
                        for p in extra_packages]
      for source, dest in zip(extra_packages, local_packages):
        file_io.copy(source, dest, overwrite=True)

      options = {
          'staging_location': os.path.join(pipeline_option['temp_location'], 'staging'),
          'job_name': job_name,
          'project': _util.default_project(),
          'extra_packages': local_packages,
          'teardown_policy': 'TEARDOWN_ALWAYS',
          'no_save_main_session': True
      }
      options.update(pipeline_option)

      opts = beam.pipeline.PipelineOptions(flags=[], **options)
      p = beam.Pipeline('DataflowRunner', options=opts)
      _predictor.configure_pipeline(p, dataset, model_dir, output_csv, output_bq_table)
      job_results = p.run()
    finally:
      shutil.rmtree(tmpdir)
      logging.getLogger().setLevel(original_level)

    if (_util.is_in_IPython()):
      import IPython
      dataflow_url = ('https://console.developers.google.com/dataflow?project=%s' %
                      _util.default_project())
      html = 'Job "%s" submitted.' % job_name
      html += ('<p>Click <a href="%s" target="_blank">here</a> to track batch prediction job. <br/>'
               % dataflow_url)
      IPython.display.display_html(html, raw=True)
    return google.datalab.utils.DataflowJob(job_results)
开发者ID:parthea,项目名称:pydatalab,代码行数:55,代码来源:_cloud.py


示例13: run_analysis

def run_analysis(args):
  """Builds an analysis files for training."""

  # Read the schema and input feature types
  schema_list = json.loads(
      file_io.read_file_to_string(args.schema_file))

  run_numerical_categorical_analysis(args, schema_list)

  # Also save a copy of the schema in the output folder.
  file_io.copy(args.schema_file,
               os.path.join(args.output_dir, SCHEMA_FILE),
               overwrite=True)
开发者ID:googledatalab,项目名称:pydatalab,代码行数:13,代码来源:local_preprocess.py


示例14: recursive_copy

def recursive_copy(src_dir, dest_dir):
  """Copy the contents of src_dir into the folder dest_dir.
  Args:
    src_dir: gsc or local path.
    dest_dir: gcs or local path.
  """

  file_io.recursive_create_dir(dest_dir)
  for file_name in file_io.list_directory(src_dir):
    old_path = os.path.join(src_dir, file_name)
    new_path = os.path.join(dest_dir, file_name)

    if file_io.is_directory(old_path):
      recursive_copy(old_path, new_path)
    else:
      file_io.copy(old_path, new_path, overwrite=True)
开发者ID:javiervicho,项目名称:pydatalab,代码行数:16,代码来源:task.py


示例15: _copy_assets_to_destination_dir

  def _copy_assets_to_destination_dir(self, asset_filename_map):
    """Copy all assets from source path to destination path."""
    assets_destination_dir = saved_model_utils.get_or_create_assets_dir(
        self._export_dir)

    # Copy each asset from source path to destination path.
    for asset_basename, asset_source_filepath in asset_filename_map.items():
      asset_destination_filepath = os.path.join(
          compat.as_bytes(assets_destination_dir),
          compat.as_bytes(asset_basename))

      # Only copy the asset file to the destination if it does not already
      # exist. This is to ensure that an asset with the same name defined as
      # part of multiple graphs is only copied the first time.
      if not file_io.file_exists(asset_destination_filepath):
        file_io.copy(asset_source_filepath, asset_destination_filepath)

    tf_logging.info("Assets written to: %s",
                    compat.as_text(assets_destination_dir))
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:19,代码来源:builder_impl.py


示例16: _recursive_copy

def _recursive_copy(src_dir, dest_dir):
  """Copy the contents of src_dir into the folder dest_dir.
  Args:
    src_dir: gsc or local path.
    dest_dir: gcs or local path.
  When called, dest_dir should exist.
  """
  src_dir = python_portable_string(src_dir)
  dest_dir = python_portable_string(dest_dir)

  file_io.recursive_create_dir(dest_dir)
  for file_name in file_io.list_directory(src_dir):
    old_path = os.path.join(src_dir, file_name)
    new_path = os.path.join(dest_dir, file_name)

    if file_io.is_directory(old_path):
      _recursive_copy(old_path, new_path)
    else:
      file_io.copy(old_path, new_path, overwrite=True)
开发者ID:googledatalab,项目名称:pydatalab,代码行数:19,代码来源:util.py


示例17: main

def main(argv=None):
  args = parse_arguments(sys.argv if argv is None else argv)

  if args.cloud:
    tmpdir = tempfile.mkdtemp()
    try:
      local_packages = [os.path.join(tmpdir, os.path.basename(p)) for p in args.extra_package]
      for source, dest in zip(args.extra_package, local_packages):
        file_io.copy(source, dest, overwrite=True)

      options = {
          'staging_location': os.path.join(args.output_dir, 'tmp', 'staging'),
          'temp_location': os.path.join(args.output_dir, 'tmp', 'staging'),
          'job_name': args.job_name,
          'project': args.project_id,
          'no_save_main_session': True,
          'extra_packages': local_packages,
          'teardown_policy': 'TEARDOWN_ALWAYS',
      }
      opts = beam.pipeline.PipelineOptions(flags=[], **options)
      # Or use BlockingDataflowPipelineRunner
      p = beam.Pipeline('DataflowRunner', options=opts)
      make_prediction_pipeline(p, args)
      print(('Dataflow Job submitted, see Job %s at '
             'https://console.developers.google.com/dataflow?project=%s') %
            (options['job_name'], args.project_id))
      sys.stdout.flush()
      runner_results = p.run()
    finally:
      shutil.rmtree(tmpdir)
  else:
    p = beam.Pipeline('DirectRunner')
    make_prediction_pipeline(p, args)
    runner_results = p.run()

  return runner_results
开发者ID:googledatalab,项目名称:pydatalab,代码行数:36,代码来源:predict.py


示例18: export_fn

  def export_fn(estimator, export_dir_base, checkpoint_path=None, eval_result=None):
    with ops.Graph().as_default() as g:
      contrib_variables.create_global_step(g)

      input_ops = feature_transforms.build_csv_serving_tensors_for_training_step(
          args.analysis, features, schema, stats, keep_target)
      model_fn_ops = estimator._call_model_fn(input_ops.features,
                                              None,
                                              model_fn_lib.ModeKeys.INFER)
      output_fetch_tensors = make_prediction_output_tensors(
          args=args,
          features=features,
          input_ops=input_ops,
          model_fn_ops=model_fn_ops,
          keep_target=keep_target)

      # Don't use signature_def_utils.predict_signature_def as that renames
      # tensor names if there is only 1 input/output tensor!
      signature_inputs = {key: tf.saved_model.utils.build_tensor_info(tensor)
                          for key, tensor in six.iteritems(input_ops.default_inputs)}
      signature_outputs = {key: tf.saved_model.utils.build_tensor_info(tensor)
                           for key, tensor in six.iteritems(output_fetch_tensors)}
      signature_def_map = {
          'serving_default':
              signature_def_utils.build_signature_def(
                  signature_inputs,
                  signature_outputs,
                  tf.saved_model.signature_constants.PREDICT_METHOD_NAME)}

      if not checkpoint_path:
        # Locate the latest checkpoint
        checkpoint_path = saver.latest_checkpoint(estimator._model_dir)
      if not checkpoint_path:
        raise ValueError("Couldn't find trained model at %s."
                         % estimator._model_dir)

      export_dir = saved_model_export_utils.get_timestamped_export_dir(
          export_dir_base)

      if (model_fn_ops.scaffold is not None and
         model_fn_ops.scaffold.saver is not None):
        saver_for_restore = model_fn_ops.scaffold.saver
      else:
        saver_for_restore = saver.Saver(sharded=True)

      with tf_session.Session('') as session:
        saver_for_restore.restore(session, checkpoint_path)
        init_op = control_flow_ops.group(
            variables.local_variables_initializer(),
            resources.initialize_resources(resources.shared_resources()),
            tf.tables_initializer())

        # Perform the export
        builder = saved_model_builder.SavedModelBuilder(export_dir)
        builder.add_meta_graph_and_variables(
            session, [tag_constants.SERVING],
            signature_def_map=signature_def_map,
            assets_collection=ops.get_collection(
                ops.GraphKeys.ASSET_FILEPATHS),
            legacy_init_op=init_op)
        builder.save(False)

      # Add the extra assets
      if assets_extra:
        assets_extra_path = os.path.join(compat.as_bytes(export_dir),
                                         compat.as_bytes('assets.extra'))
        for dest_relative, source in assets_extra.items():
          dest_absolute = os.path.join(compat.as_bytes(assets_extra_path),
                                       compat.as_bytes(dest_relative))
          dest_path = os.path.dirname(dest_absolute)
          file_io.recursive_create_dir(dest_path)
          file_io.copy(source, dest_absolute)

    # only keep the last 3 models
    saved_model_export_utils.garbage_collect_exports(
        export_dir_base,
        exports_to_keep=3)

    # save the last model to the model folder.
    # export_dir_base = A/B/intermediate_models/
    if keep_target:
      final_dir = os.path.join(args.job_dir, 'evaluation_model')
    else:
      final_dir = os.path.join(args.job_dir, 'model')
    if file_io.is_directory(final_dir):
      file_io.delete_recursively(final_dir)
    file_io.recursive_create_dir(final_dir)
    recursive_copy(export_dir, final_dir)

    return export_dir
开发者ID:javiervicho,项目名称:pydatalab,代码行数:90,代码来源:task.py


示例19: copy

 def copy(cls, oldpath, newpath, overwrite=False):
     file_io.copy(oldpath, newpath, overwrite)
开发者ID:idil77soltahanov,项目名称:hugin-1,代码行数:2,代码来源:IOUtils.py


示例20: test_local_bigquery_transform

  def test_local_bigquery_transform(self):
    """Test transfrom locally, but the data comes from bigquery."""

    # Make a BQ table, and insert 1 row.
    try:
      bucket_name = 'temp_pydatalab_test_%s' % uuid.uuid4().hex
      bucket_root = 'gs://%s' % bucket_name
      bucket = storage.Bucket(bucket_name)
      bucket.create()

      project_id = dl.Context.default().project_id

      dataset_name = 'test_transform_raw_data_%s' % uuid.uuid4().hex
      table_name = 'tmp_table'

      dataset = bq.Dataset((project_id, dataset_name)).create()
      table = bq.Table((project_id, dataset_name, table_name))
      table.create([{'name': 'key_col', 'type': 'INTEGER'},
                    {'name': 'target_col', 'type': 'FLOAT'},
                    {'name': 'cat_col', 'type': 'STRING'},
                    {'name': 'num_col', 'type': 'FLOAT'},
                    {'name': 'img_col', 'type': 'STRING'}])

      img1_file = os.path.join(self.source_dir, 'img1.jpg')
      dest_file = os.path.join(bucket_root, 'img1.jpg')
      file_io.copy(img1_file, dest_file)

      data = [
          {
           'key_col': 1,
           'target_col': 1.0,
           'cat_col': 'Monday',
           'num_col': 23.0,
           'img_col': dest_file,
          },
      ]
      table.insert(data=data)

      cmd = ['python ' + os.path.join(CODE_PATH, 'transform.py'),
             '--bigquery=%s.%s.%s' % (project_id, dataset_name, table_name),
             '--analysis=' + self.analysis_dir,
             '--prefix=features',
             '--project-id=' + project_id,
             '--output=' + self.output_dir]
      print('cmd ', ' '.join(cmd))
      subprocess.check_call(' '.join(cmd), shell=True)

      # Read the tf record file. There should only be one file.
      record_filepath = os.path.join(self.output_dir,
                                     'features-00000-of-00001.tfrecord.gz')
      options = tf.python_io.TFRecordOptions(
          compression_type=tf.python_io.TFRecordCompressionType.GZIP)
      serialized_examples = list(tf.python_io.tf_record_iterator(record_filepath, options=options))
      self.assertEqual(len(serialized_examples), 1)

      example = tf.train.Example()
      example.ParseFromString(serialized_examples[0])

      transformed_number = example.features.feature['num_col'].float_list.value[0]
      self.assertAlmostEqual(transformed_number, 23.0)
      transformed_category = example.features.feature['cat_col'].int64_list.value[0]
      self.assertEqual(transformed_category, 2)
      image_bytes = example.features.feature['img_col'].float_list.value
      self.assertEqual(len(image_bytes), 2048)
      self.assertTrue(any(x != 0.0 for x in image_bytes))
    finally:
      dataset.delete(delete_contents=True)

      for obj in bucket.objects():
        obj.delete()
      bucket.delete()
开发者ID:javiervicho,项目名称:pydatalab,代码行数:71,代码来源:test_transform.py



注:本文中的tensorflow.python.lib.io.file_io.copy函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python file_io.create_dir函数代码示例发布时间:2022-05-27
下一篇:
Python core.dense函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap