• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensor_shape.vector函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.framework.tensor_shape.vector函数的典型用法代码示例。如果您正苦于以下问题:Python vector函数的具体用法?Python vector怎么用?Python vector使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了vector函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: testBroadcast_one_dimension

  def testBroadcast_one_dimension(self):
    s1 = tensor_shape.vector(5)
    s2 = tensor_shape.vector(7)

    unknown = tensor_shape.unknown_shape()
    scalar = tensor_shape.scalar()
    expanded_scalar = tensor_shape.TensorShape([1])

    # Tensors with same shape should have the same broadcast result.
    for shape in (s1, s2, unknown, scalar, expanded_scalar):
      self._assert_broadcast(expected=shape, shape1=shape, shape2=shape)

    # [] and [1] act like identity.
    self._assert_broadcast(expected=s1, shape1=s1, shape2=scalar)
    self._assert_broadcast(expected=s2, shape1=s2, shape2=scalar)
    self._assert_broadcast(expected=s1, shape1=s1, shape2=expanded_scalar)
    self._assert_broadcast(expected=s2, shape1=s2, shape2=expanded_scalar)

    self._assert_broadcast(expected=unknown, shape1=s1, shape2=unknown)
    self._assert_broadcast(expected=unknown, shape1=s2, shape2=unknown)

    self._assert_broadcast(
        expected=expanded_scalar, shape1=scalar, shape2=expanded_scalar)

    self._assert_incompatible_broadcast(shape1=s1, shape2=s2)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:25,代码来源:common_shapes_test.py


示例2: _TensorArraySplitShape

def _TensorArraySplitShape(op):
    # handle, value, lengths, flow_in
    op.inputs[0].get_shape().merge_with(tensor_shape.vector(2))
    op.inputs[2].get_shape().merge_with(tensor_shape.vector(None))
    op.inputs[3].get_shape().merge_with(tensor_shape.scalar())
    # flow_out
    return [tensor_shape.scalar()]
开发者ID:MISingularity,项目名称:tensorflow,代码行数:7,代码来源:tensor_array_ops.py


示例3: testShapes

  def testShapes(self):
    fdef = self._build_function_def()

    g = function_def_to_graph.function_def_to_graph(fdef)
    self.assertIsNone(g.inputs[0].shape.dims)  # Unknown dims.
    self.assertIsNone(g.inputs[1].shape.dims)  # Unknown dims.
    self.assertIsNone(g.outputs[0].shape.dims)  # Unknown dims.
    self.assertIsNone(g.outputs[1].shape.dims)  # Unknown dims.

    g = function_def_to_graph.function_def_to_graph(
        fdef, input_shapes=[tensor_shape.vector(5),
                            tensor_shape.vector(5)])
    self.assertSequenceEqual(g.inputs[0].shape.dims, [5])
    self.assertSequenceEqual(g.inputs[1].shape.dims, [5])
    self.assertSequenceEqual(g.outputs[0].shape.dims, [5])
    self.assertSequenceEqual(g.outputs[1].shape.dims, [5])

    g = function_def_to_graph.function_def_to_graph(
        fdef, input_shapes=[None, tensor_shape.matrix(5, 7)])
    self.assertIsNone(g.inputs[0].shape.dims)
    self.assertSequenceEqual(g.inputs[1].shape.dims, [5, 7])
    self.assertSequenceEqual(g.outputs[0].shape.dims, [5, 7])
    self.assertSequenceEqual(g.outputs[1].shape.dims, [5, 7])

    # Should raise a ValueError if the length of input_shapes does not match
    # the number of input args in FunctionDef.signature.input_arg.
    with self.assertRaises(ValueError):
      g = function_def_to_graph.function_def_to_graph(
          fdef, input_shapes=[tensor_shape.matrix(5, 7)])
开发者ID:aeverall,项目名称:tensorflow,代码行数:29,代码来源:function_def_to_graph_test.py


示例4: testBroadcast_one_dimension

  def testBroadcast_one_dimension(self):
    s1 = tensor_shape.vector(5)
    s2 = tensor_shape.vector(7)

    unknown = tensor_shape.unknown_shape()
    scalar = tensor_shape.scalar()
    expanded_scalar = tensor_shape.TensorShape([1])

    # Tensors with same shape should have the same broadcast result.
    self.assertEqual(s1, common_shapes.broadcast_shape(s1, s1))
    self.assertEqual(s2, common_shapes.broadcast_shape(s2, s2))
    self.assertEqual(unknown, common_shapes.broadcast_shape(unknown, unknown))
    self.assertEqual(scalar, common_shapes.broadcast_shape(scalar, scalar))
    self.assertEqual(expanded_scalar, common_shapes.broadcast_shape(
        expanded_scalar, expanded_scalar))

    # [] acts like an identity.
    self.assertEqual(s1, common_shapes.broadcast_shape(s1, scalar))
    self.assertEqual(s2, common_shapes.broadcast_shape(s2, scalar))

    self.assertEqual(s1, common_shapes.broadcast_shape(s1, expanded_scalar))
    self.assertEqual(s2, common_shapes.broadcast_shape(s2, expanded_scalar))

    self.assertEqual(unknown, common_shapes.broadcast_shape(s1, unknown))
    self.assertEqual(unknown, common_shapes.broadcast_shape(s2, unknown))

    self.assertEqual(expanded_scalar, common_shapes.broadcast_shape(
        scalar, expanded_scalar))

    with self.assertRaises(ValueError):
      common_shapes.broadcast_shape(s1, s2)
      common_shapes.broadcast_shape(s2, s1)
开发者ID:821760408-sp,项目名称:tensorflow,代码行数:32,代码来源:common_shapes_test.py


示例5: _ParseSingleSequenceExampleShape

def _ParseSingleSequenceExampleShape(op):
    """Shape function for the ParseExample op."""
    op.inputs[0].get_shape().with_rank(0)  # input
    # feature_list_dense_missing_assumed_empty
    op.inputs[1].get_shape().with_rank(1)
    num_context_sparse = op.get_attr("Ncontext_sparse")
    num_context_dense = op.get_attr("Ncontext_dense")
    num_feature_list_dense = op.get_attr("Nfeature_list_dense")
    context_dense_shapes = op.get_attr("context_dense_shapes")
    num_feature_list_sparse = op.get_attr("Nfeature_list_sparse")
    feature_list_dense_shapes = op.get_attr("feature_list_dense_shapes")
    context_sparse_index_shapes = [tensor_shape.matrix(None, 1) for _ in range(num_context_sparse)]
    context_sparse_value_shapes = [tensor_shape.vector(None) for _ in range(num_context_sparse)]
    context_sparse_shape_shapes = [tensor_shape.vector(1) for _ in range(num_context_sparse)]
    context_dense_shapes = [tensor_shape.TensorShape(dense_shape) for dense_shape in context_dense_shapes]
    feature_list_sparse_index_shapes = [tensor_shape.matrix(None, 2) for _ in range(num_feature_list_sparse)]
    feature_list_sparse_value_shapes = [tensor_shape.vector(None) for _ in range(num_feature_list_sparse)]
    feature_list_sparse_shape_shapes = [tensor_shape.vector(2) for _ in range(num_feature_list_sparse)]
    feature_list_dense_shapes = [
        tensor_shape.vector(None).concatenate(dense_shape) for dense_shape in feature_list_dense_shapes
    ]
    assert num_context_dense == len(context_dense_shapes)
    assert num_feature_list_dense == len(feature_list_dense_shapes)
    return (
        context_sparse_index_shapes
        + context_sparse_value_shapes
        + context_sparse_shape_shapes
        + context_dense_shapes
        + feature_list_sparse_index_shapes
        + feature_list_sparse_value_shapes
        + feature_list_sparse_shape_shapes
        + feature_list_dense_shapes
    )
开发者ID:informatrix,项目名称:tensorflow,代码行数:33,代码来源:parsing_ops.py


示例6: _CandidateSamplerShape

def _CandidateSamplerShape(op):
  true_classes_shape = op.inputs[0].get_shape().with_rank(2)
  batch_size = true_classes_shape[0]
  num_sampled = op.get_attr("num_sampled")
  num_true = op.get_attr("num_true")
  return [tensor_shape.vector(num_sampled),
          tensor_shape.matrix(batch_size, num_true),
          tensor_shape.vector(num_sampled)]
开发者ID:0ruben,项目名称:tensorflow,代码行数:8,代码来源:candidate_sampling_ops.py


示例7: _RangeShape

def _RangeShape(op):
    start_value = tensor_util.constant_value(op.inputs[0])
    limit_value = tensor_util.constant_value(op.inputs[1])
    delta_value = tensor_util.constant_value(op.inputs[2])
    if start_value is None or limit_value is None or delta_value is None:
        return [tensor_shape.vector(None)]
    else:
        return [tensor_shape.vector((limit_value - start_value + delta_value - 1) // delta_value)]
开发者ID:sambrego,项目名称:tensorflow,代码行数:8,代码来源:math_ops.py


示例8: _SparseSoftmaxCrossEntropyWithLogitsShape

def _SparseSoftmaxCrossEntropyWithLogitsShape(op):
  """Shape function for SparseSoftmaxCrossEntropyWithLogits op."""
  logits_shape = op.inputs[0].get_shape()
  input_shape = logits_shape.with_rank(2)
  batch_size = input_shape[0]
  # labels_shape
  op.inputs[1].get_shape().merge_with(tensor_shape.vector(batch_size))
  return [tensor_shape.vector(batch_size.value), input_shape]
开发者ID:ThomasWollmann,项目名称:tensorflow,代码行数:8,代码来源:nn_ops.py


示例9: _DeserializeSparseShape

def _DeserializeSparseShape(op):  # pylint: disable=invalid-name
  """Shape function for DeserializeManySparse op."""
  serialized_sparse_shape = op.inputs[0].get_shape().with_rank(2)
  serialized_sparse_shape.merge_with(
      tensor_shape.TensorShape([None, 3]))

  return [tensor_shape.matrix(None, None),
          tensor_shape.vector(None),
          tensor_shape.vector(None)]
开发者ID:13331151,项目名称:tensorflow,代码行数:9,代码来源:sparse_ops.py


示例10: _SaveSlicesShape

def _SaveSlicesShape(op):
    """Shape function for SaveSlices op."""
    # Validate input shapes.
    unused_filename = op.inputs[0].get_shape().merge_with(tensor_shape.scalar())
    data_count = len(op.inputs) - 3
    unused_tensor_names_shape = op.inputs[1].get_shape().merge_with(tensor_shape.vector(data_count))
    unused_shapes_and_slices_shape = op.inputs[2].get_shape().merge_with(tensor_shape.vector(data_count))
    # TODO(mrry): Attempt to parse the shapes_and_slices values and use
    # them to constrain the shape of the remaining inputs.
    return []
开发者ID:RChandrasekar,项目名称:tensorflow,代码行数:10,代码来源:io_ops.py


示例11: _ParseExampleShape

def _ParseExampleShape(op):
    """Shape function for the ParseExample op."""
    input_shape = op.inputs[0].get_shape().with_rank(1)
    op.inputs[1].get_shape().with_rank(1)  # names
    num_sparse = op.get_attr("Nsparse")
    num_dense = op.get_attr("Ndense")
    dense_shapes = op.get_attr("dense_shapes")
    sparse_index_shapes = [tensor_shape.matrix(None, 2) for _ in range(num_sparse)]
    sparse_value_shapes = [tensor_shape.vector(None) for _ in range(num_sparse)]
    sparse_shape_shapes = [tensor_shape.vector(2) for _ in range(num_sparse)]
    assert num_dense == len(dense_shapes)
    dense_shapes = [input_shape.concatenate(dense_shape) for dense_shape in dense_shapes]
    return sparse_index_shapes + sparse_value_shapes + sparse_shape_shapes + dense_shapes
开发者ID:informatrix,项目名称:tensorflow,代码行数:13,代码来源:parsing_ops.py


示例12: _CTCGreedyDecoderShape

def _CTCGreedyDecoderShape(op):
  """Shape function for the CTCGreedyDecoder op."""
  inputs_shape = op.inputs[0].get_shape().with_rank(3)
  sequence_length_shape = op.inputs[1].get_shape().with_rank(1)
  # merge batch_size
  sequence_length_shape[0].merge_with(inputs_shape[1])
  inputs_shape[1].merge_with(sequence_length_shape[0])
  batch_size = inputs_shape[1]
  # decoded_indices, decoded_values, decoded_shape, log_probability
  return [tensor_shape.matrix(None, 2),
          tensor_shape.vector(None),
          tensor_shape.vector(2),
          tensor_shape.matrix(batch_size, 1)]
开发者ID:JamesFysh,项目名称:tensorflow,代码行数:13,代码来源:ctc_ops.py


示例13: testBroadcast_unknown_dims

  def testBroadcast_unknown_dims(self):
    unknown = tensor_shape.unknown_shape()
    shape_0 = tensor_shape.scalar()
    shape_1 = tensor_shape.vector(1)
    # pylint: disable=invalid-name
    shape_U = tensor_shape.vector(None)
    shape_1xU = tensor_shape.matrix(1, None)
    shape_Ux1 = tensor_shape.matrix(None, 1)
    shape_4xU = tensor_shape.matrix(4, None)
    shape_Ux4 = tensor_shape.matrix(None, 4)
    # pylint: enable=invalid-name

    # Tensors with same shape should have the same broadcast result.
    for shape in (shape_U, shape_1xU, shape_Ux1, shape_4xU, shape_Ux4):
      self._assert_broadcast_with_unknown_dims(
          expected=shape, shape1=shape, shape2=shape)

    # [] and [1] act like identity.
    for identity in (shape_0, shape_1):
      for shape in (shape_U, shape_1xU, shape_Ux1, shape_4xU, shape_Ux4):
        self._assert_broadcast_with_unknown_dims(
            expected=shape, shape1=identity, shape2=shape)

    # Unknown in, unknown out.
    for shape in (shape_U, shape_1xU, shape_Ux1, shape_4xU, shape_Ux4):
      self._assert_broadcast_with_unknown_dims(
          expected=unknown, shape1=shape, shape2=unknown)

    self._assert_broadcast_with_unknown_dims(
        expected=shape_1xU, shape1=shape_U, shape2=shape_1xU)
    shape_UxU = tensor_shape.matrix(None, None)  # pylint: disable=invalid-name
    self._assert_broadcast_with_unknown_dims(
        expected=shape_UxU, shape1=shape_U, shape2=shape_Ux1)
    self._assert_broadcast_with_unknown_dims(
        expected=shape_4xU, shape1=shape_U, shape2=shape_4xU)
    self._assert_broadcast_with_unknown_dims(
        expected=shape_Ux4, shape1=shape_U, shape2=shape_Ux4)
    self._assert_broadcast_with_unknown_dims(
        expected=shape_UxU, shape1=shape_1xU, shape2=shape_Ux1)
    self._assert_broadcast_with_unknown_dims(
        expected=shape_4xU, shape1=shape_1xU, shape2=shape_4xU)
    self._assert_broadcast_with_unknown_dims(
        expected=shape_Ux4, shape1=shape_1xU, shape2=shape_Ux4)
    self._assert_broadcast_with_unknown_dims(
        expected=shape_4xU, shape1=shape_Ux1, shape2=shape_4xU)
    self._assert_broadcast_with_unknown_dims(
        expected=shape_Ux4, shape1=shape_Ux1, shape2=shape_Ux4)
    shape_4x4 = tensor_shape.matrix(4, 4)
    self._assert_broadcast_with_unknown_dims(
        expected=shape_4x4, shape1=shape_4xU, shape2=shape_Ux4)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:50,代码来源:common_shapes_test.py


示例14: sample

  def sample(self, n, seed=None, name="sample"):
    """Sample `n` observations from the Uniform Distributions.

    Args:
      n: `Scalar`, type int32, the number of observations to sample.
      seed: Python integer, the random seed.
      name: The name to give this op.

    Returns:
      samples: a `Tensor` of shape `(n,) + self.batch_shape + self.event_shape`
          with values of type `self.dtype`.
    """
    with ops.name_scope(self.name):
      with ops.op_scope([self.a, self.b, n], name):
        n = ops.convert_to_tensor(n, name="n")
        n_val = tensor_util.constant_value(n)

        shape = array_ops.concat(0, [array_ops.pack([n]), self.batch_shape()])
        samples = random_ops.random_uniform(shape=shape,
                                            dtype=self.dtype,
                                            seed=seed)

        # Provide some hints to shape inference
        inferred_shape = tensor_shape.vector(n_val).concatenate(
            self.get_batch_shape())
        samples.set_shape(inferred_shape)

        return (array_ops.expand_dims(self.a, 0) + array_ops.expand_dims(
            self.range(), 0) * samples)
开发者ID:0ruben,项目名称:tensorflow,代码行数:29,代码来源:uniform.py


示例15: _TransposeShape

def _TransposeShape(op):
  """Shape function for the Transpose op.

  This op takes two inputs:

  * input: a rank-N tensor of arbitrary shape.
  * shuffle: a length-N vector.

  Its output is the rank-N tensor computed by permuting the dimensions
  of input according to shuffle.

  Args:
    op: A Transpose op.

  Returns:
    A single-element list containing the shape of the output.

  Raises:
    ValueError: If the shapes of input and shuffle are incompatible.
    IndexError: If shuffle contains an index that is >= the rank of input.
  """
  input_shape = op.inputs[0].get_shape()
  transpose_shape = op.inputs[1].get_shape().merge_with(tensor_shape.vector(
      input_shape.ndims))
  transpose_vec = tensor_util.ConstantValue(op.inputs[1])
  if transpose_vec is None:
    return [tensor_shape.unknown_shape(ndims=transpose_shape[0].value)]
  else:
    return [tensor_shape.TensorShape([input_shape[i]
                                      for i in transpose_vec.tolist()])]
开发者ID:DapengLan,项目名称:tensorflow,代码行数:30,代码来源:array_ops.py


示例16: sample

  def sample(self, n, seed=None, name="sample"):
    """Sample `n` observations from the Categorical distribution.

    Args:
      n: 0-D.  Number of independent samples to draw for each distribution.
      seed: Random seed (optional).
      name: A name for this operation (optional).

    Returns:
      An `int64` `Tensor` with shape `[n, batch_shape, event_shape]`
    """
    with ops.name_scope(self.name):
      with ops.op_scope([self.logits, n], name):
        n = ops.convert_to_tensor(n, name="n")
        logits_2d = array_ops.reshape(
            self.logits, array_ops.pack([-1, self.num_classes]))
        samples = random_ops.multinomial(logits_2d, n, seed=seed)
        samples = math_ops.cast(samples, self._dtype)
        ret = array_ops.reshape(
            array_ops.transpose(samples),
            array_ops.concat(
                0, [array_ops.expand_dims(n, 0), self.batch_shape()]))
        ret.set_shape(tensor_shape.vector(tensor_util.constant_value(n))
                      .concatenate(self.get_batch_shape()))
        return ret
开发者ID:363158858,项目名称:tensorflow,代码行数:25,代码来源:categorical.py


示例17: sample_n

  def sample_n(self, n, seed=None, name="sample_n"):
    """Sample `n` observations from the Beta Distributions.

    Args:
      n: `Scalar` `Tensor` of type `int32` or `int64`, the number of
        observations to sample.
      seed: Python integer, the random seed.
      name: The name to give this op.

    Returns:
      samples: `[n, ...]`, a `Tensor` of `n` samples for each
        of the distributions determined by broadcasting the hyperparameters.
    """
    with ops.name_scope(self.name):
      with ops.name_scope(name, values=[self.a, self.b, n]):
        a = array_ops.ones_like(self._a_b_sum, dtype=self.dtype) * self.a
        b = array_ops.ones_like(self._a_b_sum, dtype=self.dtype) * self.b
        n = ops.convert_to_tensor(n, name="n")

        gamma1_sample = random_ops.random_gamma(
            [n,], a, dtype=self.dtype, seed=seed)
        gamma2_sample = random_ops.random_gamma(
            [n,], b, dtype=self.dtype, seed=seed)

        beta_sample = gamma1_sample / (gamma1_sample + gamma2_sample)

        n_val = tensor_util.constant_value(n)
        final_shape = tensor_shape.vector(n_val).concatenate(
            self._a_b_sum.get_shape())

        beta_sample.set_shape(final_shape)
        return beta_sample
开发者ID:JamesFysh,项目名称:tensorflow,代码行数:32,代码来源:beta.py


示例18: testHelpers

 def testHelpers(self):
   tensor_shape.TensorShape([]).assert_is_compatible_with(
       tensor_shape.scalar())
   tensor_shape.TensorShape([37]).assert_is_compatible_with(
       tensor_shape.vector(37))
   tensor_shape.TensorShape(
       [94, 43]).assert_is_compatible_with(tensor_shape.matrix(94, 43))
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:7,代码来源:tensor_shape_test.py


示例19: _SerializeSparseShape

def _SerializeSparseShape(op):  # pylint: disable=invalid-name
  """Shape function for SerializeSparse op."""
  op.inputs[0].get_shape().with_rank(2)
  op.inputs[1].get_shape().with_rank(1)
  op.inputs[2].get_shape().with_rank(1)

  return [tensor_shape.vector(3)]
开发者ID:13331151,项目名称:tensorflow,代码行数:7,代码来源:sparse_ops.py


示例20: _from_tensor_list

 def _from_tensor_list(self, flat_value):
   if (len(flat_value) != 1 or flat_value[0].dtype != dtypes.variant or
       not flat_value[0].shape.is_compatible_with(tensor_shape.vector(3))):
     raise ValueError("SparseTensorStructure corresponds to a single "
                      "tf.variant vector of length 3.")
   return sparse_ops.deserialize_sparse(
       flat_value[0], dtype=self._dtype, rank=self._dense_shape.ndims)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:7,代码来源:structure.py



注:本文中的tensorflow.python.framework.tensor_shape.vector函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensor_util.constant_value函数代码示例发布时间:2022-05-27
下一篇:
Python tensor_shape.unknown_shape函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap