• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensor_shape.unknown_shape函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.framework.tensor_shape.unknown_shape函数的典型用法代码示例。如果您正苦于以下问题:Python unknown_shape函数的具体用法?Python unknown_shape怎么用?Python unknown_shape使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了unknown_shape函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: testAsList

 def testAsList(self):
   with self.assertRaisesRegexp(ValueError,
                                "not defined on an unknown TensorShape"):
     tensor_shape.unknown_shape().as_list()
   self.assertAllEqual([None, None], tensor_shape.unknown_shape(2).as_list())
   self.assertAllEqual([2, None, 4], tensor_shape.TensorShape(
       (2, None, 4)).as_list())
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:7,代码来源:tensor_shape_test.py


示例2: testPartialShapes

  def testPartialShapes(self):
    np.random.seed(1618)

    # Input shape is unknown.
    reduction_axes = [1, 2]
    c_unknown = tf.placeholder(tf.float32)
    s_unknown = tf.reduce_sum(c_unknown, reduction_axes)
    self.assertEqual(tensor_shape.unknown_shape(), s_unknown.get_shape())

    np_input = np.random.randn(3, 3, 3)
    self._compareAll(np_input, reduction_axes, {c_unknown: np_input})

    # Input shape only has known rank.
    c_known_rank = tf.placeholder(tf.float32)
    c_known_rank.set_shape(tensor_shape.unknown_shape(ndims=3))
    s_known_rank = tf.reduce_sum(c_known_rank, reduction_axes, keep_dims=True)
    self.assertEqual(3, s_known_rank.get_shape().ndims)

    np_input = np.random.randn(3, 3, 3)
    self._compareAll(np_input, reduction_axes, {c_known_rank: np_input})

    # Reduction indices are unknown.
    unknown_indices = tf.placeholder(tf.int32)
    c_unknown_indices = tf.constant([[10.0], [20.0]])
    s_unknown_indices = tf.reduce_sum(c_unknown_indices, unknown_indices,
                                     keep_dims=False)
    self.assertEqual(tensor_shape.unknown_shape(),
                     s_unknown_indices.get_shape())
    s_unknown_indices_keep = tf.reduce_sum(c_unknown_indices, unknown_indices,
                                          keep_dims=True)
    self.assertEqual(2, s_unknown_indices_keep.get_shape().ndims)
开发者ID:2020zyc,项目名称:tensorflow,代码行数:31,代码来源:reduction_ops_test.py


示例3: _SliceShape

def _SliceShape(op):
  """Shape function for array_ops.slice."""
  input_shape = op.inputs[0].get_shape()
  begin_shape = op.inputs[1].get_shape().with_rank_at_most(1)
  sizes_shape = op.inputs[2].get_shape().with_rank_at_most(1)
  rank_vector_shape = begin_shape.merge_with(sizes_shape)
  ndims = rank_vector_shape.num_elements()
  if ndims is not None:
    input_shape.assert_has_rank(ndims)
  begin_value = tensor_util.ConstantValue(op.inputs[1])
  sizes_value = tensor_util.ConstantValue(op.inputs[2])
  if sizes_value is not None:
    returned_dims = []
    for i, slice_size in enumerate(sizes_value.ravel()):
      if slice_size != -1:
        returned_dims.append(slice_size)
      elif begin_value is not None:
        returned_dims.append(input_shape[i] - begin_value[i])
      else:
        returned_dims.append(None)
    return [tensor_shape.TensorShape(returned_dims)]
  else:
    if input_shape.ndims is not None:
      return [tensor_shape.unknown_shape(ndims=input_shape.ndims)]
    elif ndims is not None:
      return [tensor_shape.unknown_shape(ndims=ndims)]
    else:
      return [tensor_shape.unknown_shape()]
开发者ID:DapengLan,项目名称:tensorflow,代码行数:28,代码来源:array_ops.py


示例4: testAssignNoShapeNoValidateShape

 def testAssignNoShapeNoValidateShape(self):
   with self.test_session():
     value = self._NewShapelessTensor()
     var = state_ops.variable_op([1, 2], tf.float32, set_shape=False)
     self.assertEqual(tensor_shape.unknown_shape(), var.get_shape())
     self.assertEqual(tensor_shape.unknown_shape(),
                      tf.assign(var, value, validate_shape=False).get_shape())
开发者ID:debaratidas1994,项目名称:tensorflow,代码行数:7,代码来源:variable_ops_test.py


示例5: _ReductionShape

def _ReductionShape(op):
  """Common shape function for reduction ops."""
  input_shape = op.inputs[0].get_shape()
  reduction_indices = tensor_util.constant_value(op.inputs[1])
  keep_dims = op.get_attr("keep_dims")
  if reduction_indices is None or input_shape.ndims is None:
    if keep_dims:
      return [tensor_shape.unknown_shape(ndims=input_shape.ndims)]
    else:
      return [tensor_shape.unknown_shape()]

  # Turn reduction_indices from scalar to vector if necessary
  reduction_indices = np.ravel(reduction_indices)

  for reduction_index in reduction_indices:
    if reduction_index < 0 or reduction_index >= input_shape.ndims:
      raise ValueError("Invalid reduction dimension %d for input with %d "
                       "dimensions" % (reduction_index, input_shape.ndims))

  returned_dims = []
  if keep_dims:
    for i, dim in enumerate(input_shape.dims):
      if i in reduction_indices:
        returned_dims.append(1)
      else:
        returned_dims.append(dim)
  else:
    for i, dim in enumerate(input_shape.dims):
      if i not in reduction_indices:
        returned_dims.append(dim)
  return [tensor_shape.TensorShape(returned_dims)]
开发者ID:13331151,项目名称:tensorflow,代码行数:31,代码来源:math_ops.py


示例6: testAssignNoShape

 def testAssignNoShape(self):
   with self.cached_session():
     value = self._NewShapelessTensor()
     var = state_ops.variable_op([1, 2], dtypes.float32, set_shape=False)
     self.assertEqual(tensor_shape.unknown_shape(), var.get_shape())
     self.assertEqual(tensor_shape.unknown_shape(),
                      state_ops.assign(var, value).get_shape())
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:7,代码来源:variable_ops_test.py


示例7: testEquality

  def testEquality(self):
    s1 = tensor_shape.TensorShape([tensor_shape.Dimension(
        3), tensor_shape.Dimension(4), tensor_shape.Dimension(7)])
    s2 = tensor_shape.TensorShape([tensor_shape.Dimension(
        3), tensor_shape.Dimension(4), tensor_shape.Dimension(7)])
    s3 = tensor_shape.TensorShape([tensor_shape.Dimension(3),
                                   tensor_shape.Dimension(4), None])

    self.assertTrue(s1 == s2)
    self.assertFalse(s1 != s2)
    self.assertFalse(s1 == "a string")
    self.assertTrue(s1 != "a string")
    self.assertNotEqual(s1, "347", "Should not equal an ambiguous string.")
    self.assertEqual(s1, ["3", "4", "7"])

    # Test with an unknown shape in s3
    self.assertTrue(s1 != s3)
    self.assertFalse(s3 == "a string")
    self.assertTrue(s3 != "a string")

    # eq and neq are not symmetric for unknown shapes.
    unk0 = tensor_shape.unknown_shape()
    self.assertFalse(unk0 == s1)
    self.assertFalse(s1 == unk0)
    with self.assertRaises(ValueError):
      unk0 != s1  # pylint: disable=pointless-statement
    with self.assertRaises(ValueError):
      s1 != unk0  # pylint: disable=pointless-statement
    unk1 = tensor_shape.unknown_shape()
    self.assertTrue(unk0 == unk1)
    self.assertTrue(unk1 == unk0)
    with self.assertRaises(ValueError):
      unk0 != unk1  # pylint: disable=pointless-statement
    with self.assertRaises(ValueError):
      unk1 != unk0  # pylint: disable=pointless-statement
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:35,代码来源:tensor_shape_test.py


示例8: testAsProto

 def testAsProto(self):
   self.assertTrue(tensor_shape.unknown_shape().as_proto().unknown_rank)
   self.assertFalse(
       tensor_shape.unknown_shape(rank=3).as_proto().unknown_rank)
   self.assertFalse(
       tensor_shape.TensorShape([1, 2, 3]).as_proto().unknown_rank)
   self.assertFalse(
       tensor_shape.TensorShape([1, None, 3]).as_proto().unknown_rank)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:8,代码来源:tensor_shape_test.py


示例9: _sparse_shape

def _sparse_shape(op):
  """Shape function for `SparseTensor` result."""
  num_rows = (op.inputs[0].get_shape()[0] if
              op.type in ("DenseToSparseOperation", "DenseToDenseOperation")
              else None)
  return [
      tensor_shape.TensorShape([num_rows, 2]),
      tensor_shape.unknown_shape(1),
      tensor_shape.unknown_shape(1),
  ]
开发者ID:2020zyc,项目名称:tensorflow,代码行数:10,代码来源:set_ops.py


示例10: test_build_raw_serving_input_receiver_fn_without_shape

 def test_build_raw_serving_input_receiver_fn_without_shape(self):
   """Test case for issue #21178."""
   f = {"feature_1": array_ops.placeholder(dtypes.float32),
        "feature_2": array_ops.placeholder(dtypes.int32)}
   serving_input_receiver_fn = export.build_raw_serving_input_receiver_fn(f)
   v = serving_input_receiver_fn()
   self.assertTrue(isinstance(v, export.ServingInputReceiver))
   self.assertEqual(
       tensor_shape.unknown_shape(),
       v.receiver_tensors["feature_1"].shape)
   self.assertEqual(
       tensor_shape.unknown_shape(),
       v.receiver_tensors["feature_2"].shape)
开发者ID:ZhangXinNan,项目名称:tensorflow,代码行数:13,代码来源:export_test.py


示例11: testStr

  def testStr(self):
    self.assertEqual("<unknown>", str(tensor_shape.unknown_shape()))
    self.assertEqual("(?,)", str(tensor_shape.unknown_shape(ndims=1)))
    self.assertEqual("(?, ?)", str(tensor_shape.unknown_shape(ndims=2)))
    self.assertEqual("(?, ?, ?)", str(tensor_shape.unknown_shape(ndims=3)))

    self.assertEqual("()", str(tensor_shape.scalar()))
    self.assertEqual("(7,)", str(tensor_shape.vector(7)))
    self.assertEqual("(3, 8)", str(tensor_shape.matrix(3, 8)))
    self.assertEqual("(4, 5, 2)", str(tensor_shape.TensorShape([4, 5, 2])))

    self.assertEqual("(32, ?, 1, 9)",
                     str(tensor_shape.TensorShape([32, None, 1, 9])))
开发者ID:bgyss,项目名称:tensorflow,代码行数:13,代码来源:tensor_shape_test.py


示例12: test_to_feature_columns_and_input_fn

  def test_to_feature_columns_and_input_fn(self):
    df = setup_test_df_3layer()
    feature_columns, input_fn = (
        estimator_utils.to_feature_columns_and_input_fn(
            df,
            base_input_keys_with_defaults={"a": 1,
                                           "b": 2,
                                           "c": 3,
                                           "d": 4},
            label_keys=["g"],
            feature_keys=["a", "b", "f"]))

    expected_feature_column_a = feature_column.DataFrameColumn(
        "a",
        learn.PredefinedSeries(
            "a",
            parsing_ops.FixedLenFeature(tensor_shape.unknown_shape(),
                                        dtypes.int32, 1)))
    expected_feature_column_b = feature_column.DataFrameColumn(
        "b",
        learn.PredefinedSeries("b", parsing_ops.VarLenFeature(dtypes.int32)))
    expected_feature_column_f = feature_column.DataFrameColumn(
        "f",
        learn.TransformedSeries([
            learn.PredefinedSeries("c",
                                   parsing_ops.FixedLenFeature(
                                       tensor_shape.unknown_shape(),
                                       dtypes.int32, 3)),
            learn.PredefinedSeries("d", parsing_ops.VarLenFeature(dtypes.int32))
        ], mocks.Mock2x2Transform("iue", "eui", "snt"), "out2"))

    expected_feature_columns = [
        expected_feature_column_a, expected_feature_column_b,
        expected_feature_column_f
    ]
    self.assertEqual(sorted(expected_feature_columns), sorted(feature_columns))

    base_features, labels = input_fn()
    expected_base_features = {
        "a": mocks.MockTensor("Tensor a", dtypes.int32),
        "b": mocks.MockSparseTensor("SparseTensor b", dtypes.int32),
        "c": mocks.MockTensor("Tensor c", dtypes.int32),
        "d": mocks.MockSparseTensor("SparseTensor d", dtypes.int32)
    }
    self.assertEqual(expected_base_features, base_features)

    expected_labels = mocks.MockTensor("Out iue", dtypes.int32)
    self.assertEqual(expected_labels, labels)

    self.assertEqual(3, len(feature_columns))
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:50,代码来源:estimator_utils_test.py


示例13: _SqueezeShape

def _SqueezeShape(op):
  """Determine shape for squeeze op's output tensor.

  Args:
    op: Operation for which to determine shape.
  Returns:
    Shape of op's output tensor.
  Raises:
    ValueError: if squeeze_dims includes a dimension outside of [-rank, rank),
        where rank is the number of dimensions in the input tensor. Or, if
        squeeze_dims includes a dimension for which input shape has a value
        not equal to 1.
  """
  input_shape = op.inputs[0].get_shape()
  if input_shape.dims is None:
    return [tensor_shape.unknown_shape()]

  squeeze_dims = op.get_attr("squeeze_dims") or []
  wrapped_squeeze_dims = []
  input_ndims = input_shape.ndims
  for i, squeeze_dim in enumerate(squeeze_dims):
    if squeeze_dim < -input_ndims or squeeze_dim >= input_ndims:
      raise ValueError(
          "squeeze_dims[%d]=%d not in [%d, %d)." % (
              i, squeeze_dim, -input_ndims, input_ndims))
    if squeeze_dim < 0:
      squeeze_dim += input_ndims
    wrapped_squeeze_dims.append(squeeze_dim)

  result_shape = []
  for i, dim in enumerate([d.value for d in input_shape.dims]):
    is_explicit_match = i in wrapped_squeeze_dims
    if dim is None:
      if is_explicit_match:
        # Assume that the squeezed dimension will be 1 at runtime.
        continue
      if not wrapped_squeeze_dims:
        # If squeezing all 1 dimensions and we see a None, give up.
        return [tensor_shape.unknown_shape()]
    elif dim == 1:
      if is_explicit_match or not wrapped_squeeze_dims:
        continue
    elif is_explicit_match:
      raise ValueError(
          "Can not squeeze dim[%d], expected a dimension of 1, got %d." % (
              i, dim))
    result_shape.append(dim)
  return [tensor_shape.TensorShape(result_shape)]
开发者ID:sherrym,项目名称:tensorflow,代码行数:48,代码来源:array_ops.py


示例14: _dense_to_dense_shape

def _dense_to_dense_shape(op):
  """Shapes for `SparseTensor` result given 2 dense inputs.

  Args:
    op: Operation with 2 dense `Tensor` inputs.

  Returns:
    Tuple of three shapes corresponding to the indices, values, and shape
    `Tensor` components of the result `SparseTensor`.

  Raises:
    ValueError: if either input `Tensor` has rank < 2, or ranks do not match, or
    first n-1 dims of input shapes are not compatible.
  """
  # The following should stay in sync with `ComputeDenseToDense` shape
  # assertions in kernels/set_kernels.cc.
  input0_shape = op.inputs[0].get_shape()
  input0_rank = input0_shape.ndims
  if (input0_rank is not None) and (input0_rank < 2):
    raise ValueError("Input 0, expected rank >= 2, got shape %s." %
                     input0_shape)
  # Dimension n contains the set values to be compared, so ranks and the first
  # n-1 dimensions of inputs and output must match.
  input1_shape = op.inputs[1].get_shape()
  input1_rank = input1_shape.ndims
  if (input0_rank is not None) and (input1_rank is not None) and (
      input0_rank != input1_rank):
    raise ValueError(
        "Ranks do not match: input 0 with shape %s, input 1 with shape %s." %
        (input0_shape, input1_shape))
  output_rank = input1_rank if input0_rank is None else input0_rank
  output_dim0 = input1_shape[1] if input0_shape[0] is None else input0_shape[0]
  input0_dims = input0_shape.dims
  if input0_dims is None:
    group0_shape = tensor_shape.unknown_shape()
  else:
    group0_shape = tensor_shape.TensorShape(input0_dims[:-1])
  input1_dims = input1_shape.dims
  if input1_dims is None:
    group1_shape = tensor_shape.unknown_shape()
  else:
    group1_shape = tensor_shape.TensorShape(input1_dims[:-1])
  group0_shape.assert_is_compatible_with(group1_shape)

  indices_shape = tensor_shape.TensorShape((output_dim0, output_rank))
  values_shape = tensor_shape.unknown_shape(1)
  shape_shape = tensor_shape.TensorShape((output_rank,))
  return (indices_shape, values_shape, shape_shape)
开发者ID:AriaAsuka,项目名称:tensorflow,代码行数:48,代码来源:set_ops.py


示例15: constant_value_as_shape

def constant_value_as_shape(tensor):  # pylint: disable=invalid-name
  """A version of `constant_value()` that returns a `TensorShape`.

  This version should be used when a constant tensor value is
  interpreted as a (possibly partial) shape, e.g. in the shape
  function for `tf.reshape()`. By explicitly requesting a
  `TensorShape` as the return value, it is possible to represent
  unknown dimensions; by contrast, `constant_value()` is
  all-or-nothing.

  Args:
    tensor: The rank-1 Tensor to be evaluated.

  Returns:
    A `TensorShape` based on the constant value of the given `tensor`.
  """
  shape = tensor.get_shape().with_rank(1)
  if tensor.get_shape() == [0]:
    return tensor_shape.scalar()
  elif tensor.op.type == "Shape":
    return tensor.op.inputs[0].get_shape()
  elif tensor.op.type == "Pack":
    ret = tensor_shape.scalar()  # Empty list.
    for pack_input in tensor.op.inputs:
      # `pack_input` must be a scalar. Attempt to evaluate it, and append it
      # to `ret`.
      pack_input_val = constant_value(pack_input)
      if pack_input_val is None or pack_input_val < 0:
        new_dim = tensor_shape.Dimension(None)
      else:
        new_dim = tensor_shape.Dimension(pack_input_val)
      ret = ret.concatenate([new_dim])
    return ret
  elif tensor.op.type == "Concat":
    # We assume that `tensor.op.inputs[0]` evaluates to 0, as this is
    # the only legal value when concatenating vectors, and it will
    # have been checked by a previous shape function.
    ret = tensor_shape.scalar()  # Empty list.
    for concat_input in tensor.op.inputs[1:]:
      # `concat_input` must be a vector. Attempt to evaluate it as a shape,
      # and concatenate it with `ret`.
      ret = ret.concatenate(constant_value_as_shape(concat_input))
    return ret
  elif tensor.op.type == "ConcatV2":
    # We assume that `tensor.op.inputs[-1]` evaluates to 0, as this is
    # the only legal value when concatenating vectors, and it will
    # have been checked by a previous shape function.
    ret = tensor_shape.scalar()  # Empty list.
    for concat_input in tensor.op.inputs[:-1]:
      # `concat_input` must be a vector. Attempt to evaluate it as a shape,
      # and concatenate it with `ret`.
      ret = ret.concatenate(constant_value_as_shape(concat_input))
    return ret
  else:
    ret = tensor_shape.unknown_shape(shape[0].value)
    value = constant_value(tensor)
    if value is not None:
      ret = ret.merge_with(tensor_shape.TensorShape(
          [d if d != -1 else None for d in value]))
    return ret
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:60,代码来源:tensor_util.py


示例16: _testStackWhileSwap

  def _testStackWhileSwap(self, use_gpu):
    with self.test_session(use_gpu=use_gpu):
      n = constant_op.constant(0)
      h = gen_data_flow_ops._stack(dtypes.float32, stack_name="foo")

      def c(x):
        return math_ops.less(x, 10)

      def b(x):
        with ops.control_dependencies([x]):
          a = constant_op.constant(np.ones(2000), dtype=dtypes.float32)
          v = gen_data_flow_ops._stack_push(h, a, swap_memory=True)
        with ops.control_dependencies([v]):
          return math_ops.add(x, 1)

      r = control_flow_ops.while_loop(c, b, [n])

      v = constant_op.constant(np.zeros(2000), dtype=dtypes.float32)

      def c1(x, y):
        return math_ops.greater(x, 0)

      def b1(x, y):
        nx = math_ops.subtract(x, 1)
        ny = y + gen_data_flow_ops._stack_pop(h, dtypes.float32)
        return [nx, ny]

      rx, ry = control_flow_ops.while_loop(
          c1, b1, [r, v], [r.get_shape(), tensor_shape.unknown_shape()])
      self.assertAllClose(np.ones(2000) * 10.0, ry.eval())
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:30,代码来源:stack_ops_test.py


示例17: testSkipEagerBuildElementShape

 def testSkipEagerBuildElementShape(self):
   fn = list_ops._build_element_shape
   # Unknown shape -> -1.
   self.assertEqual(fn(None), -1)
   self.assertEqual(fn(tensor_shape.unknown_shape()), -1)
   # Scalar shape -> [] with type int32.
   self.assertEqual(fn([]).dtype, dtypes.int32)
   self.assertEqual(fn(tensor_shape.scalar()).dtype, dtypes.int32)
   self.assertAllEqual(self.evaluate(fn([])), np.array([], np.int32))
   self.assertAllEqual(
       self.evaluate(fn(tensor_shape.scalar())), np.array([], np.int32))
   # Tensor -> Tensor
   shape = constant_op.constant(1)
   self.assertIs(fn(shape), shape)
   # Shape with unknown dims -> shape list with -1's.
   shape = [None, 5]
   self.assertAllEqual(fn(shape), [-1, 5])
   self.assertAllEqual(fn(tensor_shape.TensorShape(shape)), [-1, 5])
   # Shape with unknown dims and tensor dims -> shape list with -1's and tensor
   # dims.
   t = array_ops.placeholder(dtypes.int32)
   shape = [None, 5, t]
   result = fn(shape)
   self.assertAllEqual(result[:2], [-1, 5])
   self.assertIs(result[2], t)
开发者ID:aeverall,项目名称:tensorflow,代码行数:25,代码来源:list_ops_test.py


示例18: _RandomShape

def _RandomShape(op):
  shape_val = tensor_util.constant_value(op.inputs[0])
  if shape_val is not None:
    return [tensor_shape.TensorShape(shape_val)]
  else:
    shape_shape = op.inputs[0].get_shape().with_rank(1)
    return [tensor_shape.unknown_shape(ndims=shape_shape[0].value)]
开发者ID:0ruben,项目名称:tensorflow,代码行数:7,代码来源:random_ops.py


示例19: _DepthwiseConv2dNativeBackpropInputShape

def _DepthwiseConv2dNativeBackpropInputShape(op):
  """Shape function for the DepthwiseConv2dNativeBackpropInput op."""
  input_shape = tensor_util.constant_value(op.inputs[0])
  if input_shape is not None:
    return [tensor_shape.TensorShape(input_shape.tolist())]
  else:
    return [tensor_shape.unknown_shape(ndims=4)]
开发者ID:ThomasWollmann,项目名称:tensorflow,代码行数:7,代码来源:nn_ops.py


示例20: _TransposeShape

def _TransposeShape(op):
  """Shape function for the Transpose op.

  This op takes two inputs:

  * input: a rank-N tensor of arbitrary shape.
  * shuffle: a length-N vector.

  Its output is the rank-N tensor computed by permuting the dimensions
  of input according to shuffle.

  Args:
    op: A Transpose op.

  Returns:
    A single-element list containing the shape of the output.

  Raises:
    ValueError: If the shapes of input and shuffle are incompatible.
    IndexError: If shuffle contains an index that is >= the rank of input.
  """
  input_shape = op.inputs[0].get_shape()
  transpose_shape = op.inputs[1].get_shape().merge_with(tensor_shape.vector(
      input_shape.ndims))
  transpose_vec = tensor_util.ConstantValue(op.inputs[1])
  if transpose_vec is None:
    return [tensor_shape.unknown_shape(ndims=transpose_shape[0].value)]
  else:
    return [tensor_shape.TensorShape([input_shape[i]
                                      for i in transpose_vec.tolist()])]
开发者ID:DapengLan,项目名称:tensorflow,代码行数:30,代码来源:array_ops.py



注:本文中的tensorflow.python.framework.tensor_shape.unknown_shape函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensor_shape.vector函数代码示例发布时间:2022-05-27
下一篇:
Python tensor_shape.scalar函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap