• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python keras.model_to_estimator函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.estimator.keras.model_to_estimator函数的典型用法代码示例。如果您正苦于以下问题:Python model_to_estimator函数的具体用法?Python model_to_estimator怎么用?Python model_to_estimator使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了model_to_estimator函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_with_empty_config

  def test_with_empty_config(self):
    keras_model, _, _, _, _ = get_resource_for_simple_model(
        model_type='sequential', is_evaluate=True)
    keras_model.compile(
        loss='categorical_crossentropy',
        optimizer='rmsprop',
        metrics=['mse', keras.metrics.categorical_accuracy])

    with self.test_session():
      est_keras = keras_lib.model_to_estimator(
          keras_model=keras_model, model_dir=self._base_dir,
          config=run_config_lib.RunConfig())
      self.assertEqual(run_config_lib.get_default_session_config(),
                       est_keras._session_config)
      self.assertEqual(est_keras._session_config,
                       est_keras._config.session_config)
      self.assertEqual(self._base_dir, est_keras._config.model_dir)
      self.assertEqual(self._base_dir, est_keras._model_dir)

    with self.test_session():
      est_keras = keras_lib.model_to_estimator(
          keras_model=keras_model, model_dir=self._base_dir,
          config=None)
      self.assertEqual(run_config_lib.get_default_session_config(),
                       est_keras._session_config)
      self.assertEqual(est_keras._session_config,
                       est_keras._config.session_config)
      self.assertEqual(self._base_dir, est_keras._config.model_dir)
      self.assertEqual(self._base_dir, est_keras._model_dir)
开发者ID:StephenOman,项目名称:tensorflow,代码行数:29,代码来源:keras_test.py


示例2: test_with_conflicting_model_dir_and_config

  def test_with_conflicting_model_dir_and_config(self):
    keras_model, _, _, _, _ = get_resource_for_simple_model(
        model_type='sequential', is_evaluate=True)
    keras_model.compile(
        loss='categorical_crossentropy',
        optimizer='rmsprop',
        metrics=['mse', keras.metrics.categorical_accuracy])

    with self.test_session():
      with self.assertRaisesRegexp(ValueError, '`model_dir` are set both in '
                                   'constructor and `RunConfig`'):
        keras_lib.model_to_estimator(
            keras_model=keras_model, model_dir=self._base_dir,
            config=run_config_lib.RunConfig(model_dir=_TMP_DIR))
开发者ID:StephenOman,项目名称:tensorflow,代码行数:14,代码来源:keras_test.py


示例3: test_train_with_tf_optimizer

  def test_train_with_tf_optimizer(self):
    for model_type in ['sequential', 'functional']:
      keras_model, (_, _), (
          _, _), train_input_fn, eval_input_fn = get_resource_for_simple_model(
              model_type=model_type, is_evaluate=True)
      keras_model.compile(
          loss='categorical_crossentropy',
          optimizer=rmsprop.RMSPropOptimizer(1e-3),
          metrics=['mse', keras.metrics.categorical_accuracy])

      with self.test_session():
        est_keras = keras_lib.model_to_estimator(
            keras_model=keras_model,
            # Also use dict config argument to get test coverage for that line.
            config={
                'tf_random_seed': _RANDOM_SEED,
                'model_dir': self._base_dir,
            })
        before_eval_results = est_keras.evaluate(
            input_fn=eval_input_fn, steps=1)
        est_keras.train(input_fn=train_input_fn, steps=_TRAIN_SIZE / 16)
        after_eval_results = est_keras.evaluate(input_fn=eval_input_fn, steps=1)
        self.assertLess(after_eval_results['loss'], before_eval_results['loss'])

      writer_cache.FileWriterCache.clear()
      gfile.DeleteRecursively(self._config.model_dir)
开发者ID:didukhle,项目名称:tensorflow,代码行数:26,代码来源:keras_test.py


示例4: test_init_from_file

  def test_init_from_file(self):
    if h5py is None:
      return  # Skip test if models cannot be saved.

    keras_model, (x_train, y_train), (
        x_test, _), _, pred_input_fn = get_resource_for_simple_model(
            model_type='functional', is_evaluate=False)

    with self.test_session():
      keras_model.compile(
          loss='categorical_crossentropy',
          optimizer='rmsprop',
          metrics=['categorical_accuracy'])
      keras_model.fit(x_train, y_train, epochs=1)
      keras_pred = [np.argmax(y) for y in keras_model.predict(x_test)]
      fname = os.path.join(self._base_dir, 'keras_model.h5')
      keras.models.save_model(keras_model, fname)

    with self.test_session():
      keras_est = keras_lib.model_to_estimator(
          keras_model_path=fname, config=self._config)
      est_pred = [
          np.argmax(y[keras_model.output_names[0]])
          for y in keras_est.predict(input_fn=pred_input_fn)
      ]
    self.assertAllEqual(est_pred, keras_pred)
开发者ID:didukhle,项目名称:tensorflow,代码行数:26,代码来源:keras_test.py


示例5: test_invalid_ionames_error

  def test_invalid_ionames_error(self):
    (x_train, y_train), (_, _) = testing_utils.get_test_data(
        train_samples=_TRAIN_SIZE,
        test_samples=100,
        input_shape=(10,),
        num_classes=2)
    y_train = keras.utils.to_categorical(y_train)

    def invald_input_name_input_fn():
      input_dict = {'invalid_input_name': x_train}
      return input_dict, y_train

    def invald_output_name_input_fn():
      input_dict = {'input_1': x_train}
      output_dict = {'invalid_output_name': y_train}
      return input_dict, output_dict

    model = simple_functional_model()
    model.compile(
        loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
    with self.test_session():
      est_keras = keras_lib.model_to_estimator(
          keras_model=model, config=self._config)

    with self.test_session():
      with self.assertRaises(ValueError):
        est_keras.train(input_fn=invald_input_name_input_fn, steps=100)

      with self.assertRaises(ValueError):
        est_keras.train(input_fn=invald_output_name_input_fn, steps=100)
开发者ID:didukhle,项目名称:tensorflow,代码行数:30,代码来源:keras_test.py


示例6: test_train_with_subclassed_model_with_existing_state

  def test_train_with_subclassed_model_with_existing_state(self):
    keras_model, (_, _), (
        _, _), train_input_fn, eval_input_fn = get_resource_for_simple_model(
            model_type='subclass', is_evaluate=True)
    keras_model.compile(
        loss='categorical_crossentropy',
        optimizer=rmsprop.RMSPropOptimizer(1e-3),
        metrics=['mse', keras.metrics.categorical_accuracy])

    with self.test_session():
      # Create state
      keras_model.train_on_batch(np.random.random((10,) + _INPUT_SIZE),
                                 np.random.random((10, _NUM_CLASS)))
      original_preds = keras_model.predict(np.ones((10,) + _INPUT_SIZE))

      est_keras = keras_lib.model_to_estimator(
          keras_model=keras_model, config=self._config)
      est_keras.train(input_fn=train_input_fn, steps=_TRAIN_SIZE / 16)
      before_eval_results = est_keras.evaluate(
          input_fn=eval_input_fn, steps=1)
      est_keras.train(input_fn=train_input_fn, steps=_TRAIN_SIZE / 16)
      after_eval_results = est_keras.evaluate(input_fn=eval_input_fn, steps=1)
      self.assertLess(after_eval_results['loss'], before_eval_results['loss'])

      # Check that original model state was not altered
      preds = keras_model.predict(np.ones((10,) + _INPUT_SIZE))
      self.assertAllClose(original_preds, preds, atol=1e-5)
      # Check that the original model compilation did not break
      keras_model.train_on_batch(np.random.random((10,) + _INPUT_SIZE),
                                 np.random.random((10, _NUM_CLASS)))
开发者ID:didukhle,项目名称:tensorflow,代码行数:30,代码来源:keras_test.py


示例7: test_gpu_config

  def test_gpu_config(self):
    with ops.Graph().as_default():
      keras_model, (_, _), (_, _), _, _ = get_resource_for_simple_model()
      keras_model.compile(
          loss='categorical_crossentropy',
          optimizer='rmsprop',
          metrics=['mse', keras.metrics.categorical_accuracy])

      gpu_options = config_pb2.GPUOptions(per_process_gpu_memory_fraction=0.3)
      sess_config = config_pb2.ConfigProto(gpu_options=gpu_options)
      self._config._session_config = sess_config
      keras_lib.model_to_estimator(
          keras_model=keras_model, config=self._config)
      self.assertEqual(
          keras.backend.get_session()
          ._config.gpu_options.per_process_gpu_memory_fraction,
          gpu_options.per_process_gpu_memory_fraction)
开发者ID:didukhle,项目名称:tensorflow,代码行数:17,代码来源:keras_test.py


示例8: test_custom_objects

  def test_custom_objects(self):
    keras_mobile = mobilenet.MobileNet(weights=None)
    keras_mobile.compile(loss='categorical_crossentropy', optimizer='adam')
    custom_objects = {
        'relu6': mobilenet.relu6,
        'DepthwiseConv2D': mobilenet.DepthwiseConv2D
    }
    with self.assertRaisesRegexp(ValueError, 'relu6'):
      with self.test_session():
        keras_lib.model_to_estimator(
            keras_model=keras_mobile,
            model_dir=tempfile.mkdtemp(dir=self._base_dir))

    with self.test_session():
      keras_lib.model_to_estimator(
          keras_model=keras_mobile,
          model_dir=tempfile.mkdtemp(dir=self._base_dir),
          custom_objects=custom_objects)
开发者ID:didukhle,项目名称:tensorflow,代码行数:18,代码来源:keras_test.py


示例9: test_pretrained_weights

 def test_pretrained_weights(self):
   keras_model, (_, _), (_, _), _, _ = get_resource_for_simple_model()
   keras_model.compile(
       loss='categorical_crossentropy',
       optimizer=rmsprop.RMSPropOptimizer(1e-3),
       metrics=['mse', keras.metrics.categorical_accuracy])
   with self.test_session():
     keras_model.train_on_batch(
         np.random.random((10,) + _INPUT_SIZE),
         np.random.random((10, _NUM_CLASS)))
     weights = keras_model.get_weights()
     keras_model, (_, _), (_, _), _, _ = get_resource_for_simple_model()
     keras_model.set_weights(weights)
     keras_model.compile(
         loss='categorical_crossentropy',
         optimizer=SGD(lr=0.0001, momentum=0.9),
         metrics=['mse', keras.metrics.categorical_accuracy])
     keras_lib.model_to_estimator(
         keras_model=keras_model, config=self._config)
开发者ID:didukhle,项目名称:tensorflow,代码行数:19,代码来源:keras_test.py


示例10: do_test_multi_inputs_multi_outputs_with_input_fn

 def do_test_multi_inputs_multi_outputs_with_input_fn(
     self, train_input_fn, eval_input_fn, pred_input_fn):
   with self.cached_session():
     model = multi_inputs_multi_outputs_model()
     est_keras = keras_lib.model_to_estimator(
         keras_model=model, config=self._config)
     baseline_eval_results = est_keras.evaluate(
         input_fn=eval_input_fn, steps=1)
     est_keras.train(input_fn=train_input_fn, steps=_TRAIN_SIZE / 16)
     eval_results = est_keras.evaluate(input_fn=eval_input_fn, steps=1)
     self.assertLess(eval_results['loss'], baseline_eval_results['loss'])
     est_keras.predict(input_fn=pred_input_fn)
开发者ID:raminagat17,项目名称:tensorflow,代码行数:12,代码来源:keras_test.py


示例11: test_custom_objects

  def test_custom_objects(self):
    
    def relu6(x):
      return keras.backend.relu(x, max_value=6)
    
    keras_model = simple_functional_model(activation=relu6)
    keras_model.compile(loss='categorical_crossentropy', optimizer='adam')
    custom_objects = {
        'relu6': relu6
    }

    with self.assertRaisesRegexp(ValueError, 'relu6'):
      with self.test_session():
        keras_lib.model_to_estimator(
            keras_model=keras_model,
            model_dir=tempfile.mkdtemp(dir=self._base_dir))

    with self.test_session():
      keras_lib.model_to_estimator(
          keras_model=keras_model,
          model_dir=tempfile.mkdtemp(dir=self._base_dir),
          custom_objects=custom_objects)
开发者ID:godyd2702,项目名称:tensorflow,代码行数:22,代码来源:keras_test.py


示例12: test_custom_objects

  def test_custom_objects(self):

    def relu6(x):
      return keras.backend.relu(x, max_value=6)

    keras_model = simple_functional_model(activation=relu6)
    keras_model.compile(loss='categorical_crossentropy', optimizer='adam')
    custom_objects = {
        'relu6': relu6
    }

    (x_train, y_train), _ = testing_utils.get_test_data(
        train_samples=_TRAIN_SIZE,
        test_samples=50,
        input_shape=(10,),
        num_classes=2)
    y_train = keras.utils.to_categorical(y_train, 2)
    input_name = keras_model.input_names[0]
    output_name = keras_model.output_names[0]
    train_input_fn = numpy_io.numpy_input_fn(
        x=randomize_io_type(x_train, input_name),
        y=randomize_io_type(y_train, output_name),
        shuffle=False,
        num_epochs=None,
        batch_size=16)
    with self.assertRaisesRegexp(ValueError, 'relu6'):
      with self.test_session():
        est = keras_lib.model_to_estimator(
            keras_model=keras_model,
            model_dir=tempfile.mkdtemp(dir=self._base_dir))
        est.train(input_fn=train_input_fn, steps=1)

    with self.test_session():
      est = keras_lib.model_to_estimator(
          keras_model=keras_model,
          model_dir=tempfile.mkdtemp(dir=self._base_dir),
          custom_objects=custom_objects)
      est.train(input_fn=train_input_fn, steps=1)
开发者ID:StephenOman,项目名称:tensorflow,代码行数:38,代码来源:keras_test.py


示例13: do_test_multi_inputs_multi_outputs_with_input_fn

 def do_test_multi_inputs_multi_outputs_with_input_fn(
     self, distribution, train_input_fn, eval_input_fn):
   config = run_config_lib.RunConfig(
       tf_random_seed=_RANDOM_SEED,
       model_dir=self._base_dir,
       train_distribute=distribution)
   with self.cached_session():
     model = multi_inputs_multi_outputs_model()
     est_keras = keras_lib.model_to_estimator(keras_model=model, config=config)
     baseline_eval_results = est_keras.evaluate(
         input_fn=eval_input_fn, steps=1)
     est_keras.train(input_fn=train_input_fn, steps=_TRAIN_SIZE / 16)
     eval_results = est_keras.evaluate(input_fn=eval_input_fn, steps=1)
     self.assertLess(eval_results['loss'], baseline_eval_results['loss'])
开发者ID:zhaoyongke,项目名称:tensorflow,代码行数:14,代码来源:keras_test.py


示例14: test_with_empty_config_and_empty_model_dir

  def test_with_empty_config_and_empty_model_dir(self):
    keras_model, _, _, _, _ = get_resource_for_simple_model(
        model_type='sequential', is_evaluate=True)
    keras_model.compile(
        loss='categorical_crossentropy',
        optimizer='rmsprop',
        metrics=['mse', keras.metrics.categorical_accuracy])

    with self.test_session():
      with test.mock.patch.object(tempfile, 'mkdtemp', return_value=_TMP_DIR):
        est_keras = keras_lib.model_to_estimator(
            keras_model=keras_model,
            config=run_config_lib.RunConfig())
        self.assertEqual(est_keras._model_dir, _TMP_DIR)
开发者ID:StephenOman,项目名称:tensorflow,代码行数:14,代码来源:keras_test.py


示例15: test_tf_config

  def test_tf_config(self):
    keras_model, (_, _), (_, _), _, _ = get_resource_for_simple_model()
    keras_model.compile(
        loss='categorical_crossentropy',
        optimizer='rmsprop',
        metrics=['mse', keras.metrics.categorical_accuracy])

    tf_config = json.dumps({
        'cluster': {
            run_config_lib.TaskType.PS: ['localhost:1234'],
            run_config_lib.TaskType.WORKER: ['localhost:1236'],
            run_config_lib.TaskType.MASTER: ['localhost:1238']
        },
        'task': {
            'type': run_config_lib.TaskType.MASTER,
            'index': 0
        }
    })
    with test.mock.patch.dict('os.environ', {'TF_CONFIG': tf_config}):
      with self.test_session():
        keras_lib.model_to_estimator(
            keras_model=keras_model,
            model_dir=tempfile.mkdtemp(dir=self._base_dir))
开发者ID:didukhle,项目名称:tensorflow,代码行数:23,代码来源:keras_test.py


示例16: test_multi_inputs_multi_outputs

  def test_multi_inputs_multi_outputs(self):
    np.random.seed(_RANDOM_SEED)
    (a_train, c_train), (a_test, c_test) = testing_utils.get_test_data(
        train_samples=_TRAIN_SIZE,
        test_samples=50,
        input_shape=(16,),
        num_classes=3)
    np.random.seed(_RANDOM_SEED)
    (b_train, d_train), (b_test, d_test) = testing_utils.get_test_data(
        train_samples=_TRAIN_SIZE,
        test_samples=50,
        input_shape=(16,),
        num_classes=2)
    np.random.seed(_RANDOM_SEED)
    (input_m_train, _), (input_m_test, _) = testing_utils.get_test_data(
        train_samples=_TRAIN_SIZE,
        test_samples=50,
        input_shape=(8,),
        num_classes=2)

    c_train = keras.utils.to_categorical(c_train)
    c_test = keras.utils.to_categorical(c_test)
    d_train = keras.utils.to_categorical(d_train)
    d_test = keras.utils.to_categorical(d_test)

    def train_input_fn():
      input_dict = {'input_a': a_train, 'input_b': b_train,
                    'input_m': input_m_train > 0}
      output_dict = {'dense_2': c_train, 'dense_3': d_train}
      return input_dict, output_dict

    def eval_input_fn():
      input_dict = {'input_a': a_test, 'input_b': b_test,
                    'input_m': input_m_test > 0}
      output_dict = {'dense_2': c_test, 'dense_3': d_test}
      return input_dict, output_dict

    with self.test_session():
      model = multi_inputs_multi_outputs_model()
      est_keras = keras_lib.model_to_estimator(
          keras_model=model, config=self._config)
      before_eval_results = est_keras.evaluate(input_fn=eval_input_fn, steps=1)
      est_keras.train(input_fn=train_input_fn, steps=_TRAIN_SIZE / 16)
      after_eval_results = est_keras.evaluate(input_fn=eval_input_fn, steps=1)
      self.assertLess(after_eval_results['loss'], before_eval_results['loss'])
开发者ID:didukhle,项目名称:tensorflow,代码行数:45,代码来源:keras_test.py


示例17: test_train_with_subclassed_model

  def test_train_with_subclassed_model(self):
    keras_model, (_, _), (
        _, _), train_input_fn, eval_input_fn = get_resource_for_simple_model(
            model_type='subclass', is_evaluate=True)
    keras_model.compile(
        loss='categorical_crossentropy',
        optimizer=rmsprop.RMSPropOptimizer(1e-3),
        metrics=['mse', keras.metrics.categorical_accuracy])

    with self.test_session():
      est_keras = keras_lib.model_to_estimator(
          keras_model=keras_model, config=self._config)
      est_keras.train(input_fn=train_input_fn, steps=_TRAIN_SIZE / 16)
      before_eval_results = est_keras.evaluate(
          input_fn=eval_input_fn, steps=1)
      est_keras.train(input_fn=train_input_fn, steps=_TRAIN_SIZE / 16)
      after_eval_results = est_keras.evaluate(input_fn=eval_input_fn, steps=1)
      self.assertLess(after_eval_results['loss'], before_eval_results['loss'])
开发者ID:didukhle,项目名称:tensorflow,代码行数:18,代码来源:keras_test.py


示例18: test_keras_model_init_error

  def test_keras_model_init_error(self):
    with self.assertRaisesRegexp(ValueError, 'Either'):
      keras_lib.model_to_estimator()

    with self.test_session():
      keras_model = simple_sequential_model()
      with self.assertRaisesRegexp(ValueError, 'not both'):
        keras_lib.model_to_estimator(
            keras_model=keras_model,
            keras_model_path=tempfile.mkdtemp(dir=self._base_dir))

    with self.test_session():
      keras_model = simple_sequential_model()
      with self.assertRaisesRegexp(ValueError, 'compiled'):
        keras_lib.model_to_estimator(keras_model=keras_model)

    with self.test_session():
      keras_model = simple_sequential_model()
      with self.assertRaisesRegexp(ValueError, 'not a local path'):
        keras_lib.model_to_estimator(
            keras_model_path='gs://bucket/object')
开发者ID:didukhle,项目名称:tensorflow,代码行数:21,代码来源:keras_test.py


示例19: test_keras_optimizer_with_distribution_strategy

  def test_keras_optimizer_with_distribution_strategy(self, distribution):
    keras_model = simple_sequential_model()
    keras_model.compile(
        loss='categorical_crossentropy',
        optimizer=keras.optimizers.rmsprop(lr=0.01))

    config = run_config_lib.RunConfig(tf_random_seed=_RANDOM_SEED,
                                      model_dir=self._base_dir,
                                      train_distribute=distribution)
    with self.cached_session():
      est_keras = keras_lib.model_to_estimator(keras_model=keras_model,
                                               config=config)
      with self.assertRaisesRegexp(ValueError,
                                   'Only TensorFlow native optimizers are '
                                   'supported with DistributionStrategy.'):
        est_keras.train(input_fn=get_ds_train_input_fn, steps=_TRAIN_SIZE / 16)

    writer_cache.FileWriterCache.clear()
    gfile.DeleteRecursively(self._config.model_dir)
开发者ID:zhaoyongke,项目名称:tensorflow,代码行数:19,代码来源:keras_test.py


示例20: test_train_with_model_fit_and_hooks

  def test_train_with_model_fit_and_hooks(self):
    keras_model, (x_train, y_train), _, \
      train_input_fn, eval_input_fn = get_resource_for_simple_model(
          model_type='sequential', is_evaluate=True)

    keras_model.compile(
        loss='categorical_crossentropy',
        optimizer=rmsprop.RMSPropOptimizer(1e-3),
        metrics=['mse', keras.metrics.categorical_accuracy])
    my_hook = MyHook()
    with self.test_session():
      keras_model.fit(x_train, y_train, epochs=1)

      keras_est = keras_lib.model_to_estimator(
          keras_model=keras_model, config=self._config)
      before_eval_results = keras_est.evaluate(input_fn=eval_input_fn)
      keras_est.train(input_fn=train_input_fn, hooks=[my_hook],
                      steps=_TRAIN_SIZE / 16)
      after_eval_results = keras_est.evaluate(input_fn=eval_input_fn, steps=1)
      self.assertLess(after_eval_results['loss'], before_eval_results['loss'])
开发者ID:StephenOman,项目名称:tensorflow,代码行数:20,代码来源:keras_test.py



注:本文中的tensorflow.python.estimator.keras.model_to_estimator函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python training._TrainingExecutor函数代码示例发布时间:2022-05-27
下一篇:
Python pandas_io.pandas_input_fn函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap