本文整理汇总了Python中tensorflow.python.estimator.inputs.pandas_io.pandas_input_fn函数的典型用法代码示例。如果您正苦于以下问题:Python pandas_input_fn函数的具体用法?Python pandas_input_fn怎么用?Python pandas_input_fn使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了pandas_input_fn函数的17个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_pandas_input_fn
def test_pandas_input_fn(self, fc_impl):
"""Tests complete flow with pandas_input_fn."""
if not HAS_PANDAS:
return
label_dimension = 1
batch_size = 10
data = np.linspace(0., 2., batch_size, dtype=np.float32)
x = pd.DataFrame({'x': data})
y = pd.Series(data)
train_input_fn = pandas_io.pandas_input_fn(
x=x,
y=y,
batch_size=batch_size,
num_epochs=None,
shuffle=True)
eval_input_fn = pandas_io.pandas_input_fn(
x=x,
y=y,
batch_size=batch_size,
shuffle=False)
predict_input_fn = pandas_io.pandas_input_fn(
x=x,
batch_size=batch_size,
shuffle=False)
self._test_complete_flow(
train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
predict_input_fn=predict_input_fn,
input_dimension=label_dimension,
label_dimension=label_dimension,
batch_size=batch_size,
fc_impl=fc_impl)
开发者ID:gunan,项目名称:tensorflow,代码行数:33,代码来源:dnn_linear_combined_test.py
示例2: test_pandas_input_fn
def test_pandas_input_fn(self):
"""Tests complete flow with pandas_input_fn."""
if not HAS_PANDAS:
return
input_dimension = 1
n_classes = 3
batch_size = 10
data = np.linspace(0., n_classes - 1., batch_size, dtype=np.float32)
x = pd.DataFrame({'x': data})
y = pd.Series(self._as_label(data))
train_input_fn = pandas_io.pandas_input_fn(
x=x,
y=y,
batch_size=batch_size,
num_epochs=None,
shuffle=True)
eval_input_fn = pandas_io.pandas_input_fn(
x=x,
y=y,
batch_size=batch_size,
shuffle=False)
predict_input_fn = pandas_io.pandas_input_fn(
x=x,
batch_size=batch_size,
shuffle=False)
self._test_complete_flow(
train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
predict_input_fn=predict_input_fn,
input_dimension=input_dimension,
n_classes=n_classes,
batch_size=batch_size)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:33,代码来源:dnn_test.py
示例3: testPandasInputFn_IndexMismatch
def testPandasInputFn_IndexMismatch(self):
if not HAS_PANDAS:
return
x, _ = self.makeTestDataFrame()
y_noindex = pd.Series(np.arange(-32, -28))
with self.assertRaises(ValueError):
pandas_io.pandas_input_fn(
x, y_noindex, batch_size=2, shuffle=False, num_epochs=1)
开发者ID:Immexxx,项目名称:tensorflow,代码行数:8,代码来源:pandas_io_test.py
示例4: testPandasInputFn_NonBoolShuffle
def testPandasInputFn_NonBoolShuffle(self):
if not HAS_PANDAS:
return
x, _ = self.makeTestDataFrame()
y_noindex = pd.Series(np.arange(-32, -28))
with self.assertRaisesRegexp(TypeError,
'shuffle must be explicitly set as boolean'):
# Default shuffle is None
pandas_io.pandas_input_fn(x, y_noindex)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:9,代码来源:pandas_io_test.py
示例5: testPandasInputFn_Idempotent
def testPandasInputFn_Idempotent(self):
if not HAS_PANDAS:
return
x, y = self.makeTestDataFrame()
for _ in range(2):
pandas_io.pandas_input_fn(
x, y, batch_size=2, shuffle=False, num_epochs=1)()
for _ in range(2):
pandas_io.pandas_input_fn(
x, y, batch_size=2, shuffle=True, num_epochs=1)()
开发者ID:Immexxx,项目名称:tensorflow,代码行数:10,代码来源:pandas_io_test.py
示例6: testPandasInputFn_RaisesWhenTargetColumnIsAList
def testPandasInputFn_RaisesWhenTargetColumnIsAList(self):
if not HAS_PANDAS:
return
x, y = self.makeTestDataFrame()
with self.assertRaisesRegexp(TypeError,
'target_column must be a string type'):
pandas_io.pandas_input_fn(x, y, batch_size=2,
shuffle=False,
num_epochs=1,
target_column=['one', 'two'])
开发者ID:Eagle732,项目名称:tensorflow,代码行数:12,代码来源:pandas_io_test.py
示例7: testPandasInputFn_ProducesOutputsForLargeBatchAndMultipleEpochs
def testPandasInputFn_ProducesOutputsForLargeBatchAndMultipleEpochs(self):
if not HAS_PANDAS:
return
with self.test_session() as session:
index = np.arange(100, 102)
a = np.arange(2)
b = np.arange(32, 34)
x = pd.DataFrame({'a': a, 'b': b}, index=index)
y = pd.Series(np.arange(-32, -30), index=index)
input_fn = pandas_io.pandas_input_fn(
x, y, batch_size=128, shuffle=False, num_epochs=2)
results = input_fn()
coord = coordinator.Coordinator()
threads = queue_runner_impl.start_queue_runners(session, coord=coord)
features, target = session.run(results)
self.assertAllEqual(features['a'], [0, 1, 0, 1])
self.assertAllEqual(features['b'], [32, 33, 32, 33])
self.assertAllEqual(target, [-32, -31, -32, -31])
with self.assertRaises(errors.OutOfRangeError):
session.run(results)
coord.request_stop()
coord.join(threads)
开发者ID:Immexxx,项目名称:tensorflow,代码行数:27,代码来源:pandas_io_test.py
示例8: testPandasInputFn_RespectsEpoch_NoShuffle
def testPandasInputFn_RespectsEpoch_NoShuffle(self):
if not HAS_PANDAS:
return
with self.test_session() as session:
x, y = self.makeTestDataFrame()
input_fn = pandas_io.pandas_input_fn(
x, y, batch_size=4, shuffle=False, num_epochs=1)
self.assertInputsCallableNTimes(input_fn, session, 1)
开发者ID:Immexxx,项目名称:tensorflow,代码行数:9,代码来源:pandas_io_test.py
示例9: testPandasInputFn_RespectsEpoch_WithShuffleAutosize
def testPandasInputFn_RespectsEpoch_WithShuffleAutosize(self):
if not HAS_PANDAS:
return
with self.test_session() as session:
x, y = self.makeTestDataFrame()
input_fn = pandas_io.pandas_input_fn(
x, y, batch_size=2, shuffle=True, queue_capacity=None, num_epochs=2)
self.assertInputsCallableNTimes(input_fn, session, 4)
开发者ID:Immexxx,项目名称:tensorflow,代码行数:9,代码来源:pandas_io_test.py
示例10: testPandasInputFn_RespectsEpochUnevenBatches
def testPandasInputFn_RespectsEpochUnevenBatches(self):
if not HAS_PANDAS:
return
x, y = self.makeTestDataFrame()
with self.test_session() as session:
input_fn = pandas_io.pandas_input_fn(
x, y, batch_size=3, shuffle=False, num_epochs=1)
# Before the last batch, only one element of the epoch should remain.
self.assertInputsCallableNTimes(input_fn, session, 2)
开发者ID:Immexxx,项目名称:tensorflow,代码行数:10,代码来源:pandas_io_test.py
示例11: testPandasInputFn_ExcludesIndex
def testPandasInputFn_ExcludesIndex(self):
if not HAS_PANDAS:
return
with self.test_session() as session:
x, y = self.makeTestDataFrame()
input_fn = pandas_io.pandas_input_fn(
x, y, batch_size=2, shuffle=False, num_epochs=1)
features, _ = self.callInputFnOnce(input_fn, session)
self.assertFalse('index' in features)
开发者ID:Immexxx,项目名称:tensorflow,代码行数:11,代码来源:pandas_io_test.py
示例12: testPandasInputFn_OnlyX
def testPandasInputFn_OnlyX(self):
if not HAS_PANDAS:
return
with self.test_session() as session:
x, _ = self.makeTestDataFrame()
input_fn = pandas_io.pandas_input_fn(
x, y=None, batch_size=2, shuffle=False, num_epochs=1)
features = self.callInputFnOnce(input_fn, session)
self.assertAllEqual(features['a'], [0, 1])
self.assertAllEqual(features['b'], [32, 33])
开发者ID:Immexxx,项目名称:tensorflow,代码行数:12,代码来源:pandas_io_test.py
示例13: testPandasInputFn_ProducesExpectedOutputs
def testPandasInputFn_ProducesExpectedOutputs(self):
if not HAS_PANDAS:
return
with self.test_session() as session:
x, y = self.makeTestDataFrame()
input_fn = pandas_io.pandas_input_fn(
x, y, batch_size=2, shuffle=False, num_epochs=1)
features, target = self.callInputFnOnce(input_fn, session)
self.assertAllEqual(features['a'], [0, 1])
self.assertAllEqual(features['b'], [32, 33])
self.assertAllEqual(target, [-32, -31])
开发者ID:Immexxx,项目名称:tensorflow,代码行数:13,代码来源:pandas_io_test.py
示例14: test_pandas_input_fn
def test_pandas_input_fn(self):
"""Tests complete flow with pandas_input_fn."""
if not HAS_PANDAS:
return
# Pandas DataFrame natually supports 1 dim data only.
label_dimension = 1
input_dimension = label_dimension
batch_size = 10
data = np.array([1., 2., 3., 4.], dtype=np.float32)
x = pd.DataFrame({'x': data})
y = pd.Series(data)
prediction_length = 4
train_input_fn = pandas_io.pandas_input_fn(
x=x,
y=y,
batch_size=batch_size,
num_epochs=None,
shuffle=True)
eval_input_fn = pandas_io.pandas_input_fn(
x=x,
y=y,
batch_size=batch_size,
shuffle=False)
predict_input_fn = pandas_io.pandas_input_fn(
x=x,
batch_size=batch_size,
shuffle=False)
self._test_complete_flow(
train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
predict_input_fn=predict_input_fn,
input_dimension=input_dimension,
label_dimension=label_dimension,
prediction_length=prediction_length,
batch_size=batch_size)
开发者ID:m-colombo,项目名称:tensorflow,代码行数:38,代码来源:linear_test.py
示例15: testPandasInputFnYIsDataFrame_HandlesOverlappingColumnsInTargets
def testPandasInputFnYIsDataFrame_HandlesOverlappingColumnsInTargets(self):
if not HAS_PANDAS:
return
with self.test_session() as session:
x, y = self.makeTestDataFrameWithYAsDataFrame()
y = y.rename(columns={'a_target': 'a', 'b_target': 'a_n'})
input_fn = pandas_io.pandas_input_fn(
x, y, batch_size=2, shuffle=False, num_epochs=1)
features, targets = self.callInputFnOnce(input_fn, session)
self.assertAllEqual(features['a'], [0, 1])
self.assertAllEqual(features['b'], [32, 33])
self.assertAllEqual(targets['a'], [10, 11])
self.assertAllEqual(targets['a_n'], [50, 51])
开发者ID:Eagle732,项目名称:tensorflow,代码行数:15,代码来源:pandas_io_test.py
示例16: testPandasInputFn_ProducesOutputsWhenDataSizeNotDividedByBatchSize
def testPandasInputFn_ProducesOutputsWhenDataSizeNotDividedByBatchSize(self):
if not HAS_PANDAS:
return
with self.test_session() as session:
index = np.arange(100, 105)
a = np.arange(5)
b = np.arange(32, 37)
x = pd.DataFrame({'a': a, 'b': b}, index=index)
y = pd.Series(np.arange(-32, -27), index=index)
input_fn = pandas_io.pandas_input_fn(
x, y, batch_size=2, shuffle=False, num_epochs=1)
results = input_fn()
coord = coordinator.Coordinator()
threads = queue_runner_impl.start_queue_runners(session, coord=coord)
features, target = session.run(results)
self.assertAllEqual(features['a'], [0, 1])
self.assertAllEqual(features['b'], [32, 33])
self.assertAllEqual(target, [-32, -31])
features, target = session.run(results)
self.assertAllEqual(features['a'], [2, 3])
self.assertAllEqual(features['b'], [34, 35])
self.assertAllEqual(target, [-30, -29])
features, target = session.run(results)
self.assertAllEqual(features['a'], [4])
self.assertAllEqual(features['b'], [36])
self.assertAllEqual(target, [-28])
with self.assertRaises(errors.OutOfRangeError):
session.run(results)
coord.request_stop()
coord.join(threads)
开发者ID:Immexxx,项目名称:tensorflow,代码行数:38,代码来源:pandas_io_test.py
示例17: create_input_data_fn
def create_input_data_fn(mode, pipeline_config, scope=None, input_type=None, x=None, y=None):
"""Creates an input data function that can be used with estimators.
Note that you must pass "factory functions" for both the data provider and
featurizer to ensure that everything will be created in the same graph.
Args:
mode: `str`, Specifies if this training, evaluation or prediction. See `Modes`.
pipeline_config: the configuration to create a Pipeline instance.
scope: `str`. scope to use for this input data block.
input_type: `str`. The type of the input, values: `NUMPY`, `PANDAS`.
If `None`, will create a function based on the pipeline config.
x: `np.ndarray` or `np.Dataframe` or `None`.
y: `np.ndarray` or `None`.
Returns:
An input function that returns `(feature_batch, labels_batch)`
tuples when called.
"""
pipeline_config = pipeline_config
if input_type == InputDataConfig.NUMPY:
# setup_train_data_feeder
return numpy_input_fn(x, y,
batch_size=pipeline_config.batch_size,
num_epochs=pipeline_config.num_epochs,
shuffle=pipeline_config.shuffle,
num_threads=pipeline_config.num_threads)
if input_type == InputDataConfig.PANDAS:
# setup_train_data_feeder
return pandas_input_fn(x, y,
batch_size=pipeline_config.batch_size,
num_epochs=pipeline_config.num_epochs,
shuffle=pipeline_config.shuffle,
num_threads=pipeline_config.num_threads)
def input_fn():
"""Creates features and labels."""
pipeline = getters.get_pipeline(
mode=mode, module=pipeline_config.module, shuffle=pipeline_config.shuffle,
num_epochs=pipeline_config.num_epochs,
subgraph_configs_by_features=pipeline_config.subgraph_configs_by_features,
**pipeline_config.params)
with tf.variable_scope(scope or 'input_fn'):
data_provider = pipeline.make_data_provider()
features_and_labels = pipeline.read_from_data_provider(data_provider)
# call pipeline processors
features_and_labels = pipeline(features_and_labels)
if pipeline_config.bucket_boundaries:
_, batch = tf.contrib.training.bucket_by_sequence_length(
input_length=features_and_labels['source_len'],
bucket_boundaries=pipeline_config.bucket_boundaries,
tensors=features_and_labels,
batch_size=pipeline_config.batch_size,
keep_input=features_and_labels['source_len'] >= 1,
dynamic_pad=pipeline_config.dynamic_pad,
capacity=pipeline_config.capacity,
allow_smaller_final_batch=pipeline_config.allow_smaller_final_batch,
name='bucket_queue')
else:
batch = tf.train.batch(
tensors=features_and_labels,
enqueue_many=False,
batch_size=pipeline_config.batch_size,
dynamic_pad=pipeline_config.dynamic_pad,
capacity=pipeline_config.capacity,
allow_smaller_final_batch=pipeline_config.allow_smaller_final_batch,
name='batch_queue')
# Separate features and labels
features_batch = {k: batch[k] for k in pipeline.feature_keys}
if set(batch.keys()).intersection(pipeline.label_keys):
labels_batch = {k: batch[k] for k in pipeline.label_keys}
else:
labels_batch = None
return features_batch, labels_batch
return input_fn
开发者ID:AlexMikhalev,项目名称:polyaxon,代码行数:82,代码来源:input_data.py
注:本文中的tensorflow.python.estimator.inputs.pandas_io.pandas_input_fn函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论