本文整理汇总了Python中tensorflow.python.estimator.inputs.numpy_io.numpy_input_fn函数的典型用法代码示例。如果您正苦于以下问题:Python numpy_input_fn函数的具体用法?Python numpy_input_fn怎么用?Python numpy_input_fn使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了numpy_input_fn函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_numpy_input_fn
def test_numpy_input_fn(self):
"""Tests complete flow with numpy_input_fn."""
label_dimension = 2
batch_size = 10
data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32)
data = data.reshape(batch_size, label_dimension)
# learn y = x
train_input_fn = numpy_io.numpy_input_fn(
x={'x': data},
y=data,
batch_size=batch_size,
num_epochs=None,
shuffle=True)
eval_input_fn = numpy_io.numpy_input_fn(
x={'x': data},
y=data,
batch_size=batch_size,
shuffle=False)
predict_input_fn = numpy_io.numpy_input_fn(
x={'x': data},
batch_size=batch_size,
shuffle=False)
self._test_complete_flow(
train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
predict_input_fn=predict_input_fn,
input_dimension=label_dimension,
label_dimension=label_dimension,
batch_size=batch_size)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:30,代码来源:dnn_linear_combined_test.py
示例2: testCheckpointCompatibleForClassifier
def testCheckpointCompatibleForClassifier(self):
n_classes = 2
input_dimension = 2
batch_size = 10
data = np.linspace(
0., n_classes - 1., batch_size * input_dimension, dtype=np.float32)
x_data = data.reshape(batch_size, input_dimension)
y_data = np.reshape(
np.rint(data[:batch_size]).astype(np.int64), (batch_size, 1))
# learn y = x
train_input_fn = numpy_io.numpy_input_fn(
x={'x': x_data},
y=y_data,
batch_size=batch_size,
num_epochs=None,
shuffle=True)
predict_input_fn = numpy_io.numpy_input_fn(
x={'x': x_data}, batch_size=batch_size, shuffle=False)
self._testCheckpointCompatibleWithNonAnnotatedEstimator(
train_input_fn,
predict_input_fn,
dnn.DNNClassifier,
dnn_with_layer_annotations.DNNClassifierWithLayerAnnotations,
prediction_key=prediction_keys.PredictionKeys.PROBABILITIES,
estimator_args={'n_classes': n_classes})
开发者ID:AnishShah,项目名称:tensorflow,代码行数:26,代码来源:dnn_with_layer_annotations_test.py
示例3: test_numpy_input_fn
def test_numpy_input_fn(self):
"""Tests complete flow with numpy_input_fn."""
n_classes = 3
input_dimension = 2
batch_size = 10
data = np.linspace(
0., n_classes - 1., batch_size * input_dimension, dtype=np.float32)
x_data = data.reshape(batch_size, input_dimension)
y_data = np.reshape(self._as_label(data[:batch_size]), (batch_size, 1))
# learn y = x
train_input_fn = numpy_io.numpy_input_fn(
x={'x': x_data},
y=y_data,
batch_size=batch_size,
num_epochs=None,
shuffle=True)
eval_input_fn = numpy_io.numpy_input_fn(
x={'x': x_data},
y=y_data,
batch_size=batch_size,
shuffle=False)
predict_input_fn = numpy_io.numpy_input_fn(
x={'x': x_data},
batch_size=batch_size,
shuffle=False)
self._test_complete_flow(
train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
predict_input_fn=predict_input_fn,
input_dimension=input_dimension,
n_classes=n_classes,
batch_size=batch_size)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:33,代码来源:dnn_test.py
示例4: test_numpy_input_fn
def test_numpy_input_fn(self):
"""Tests complete flow with numpy_input_fn."""
batch_size = 5
img_size = 8
channel_size = 3
label_size = 3
image_data = np.zeros(
[batch_size, img_size, img_size, channel_size], dtype=np.float32)
train_input_fn = numpy_io.numpy_input_fn(
x={'x': image_data},
batch_size=batch_size,
num_epochs=None,
shuffle=True)
eval_input_fn = numpy_io.numpy_input_fn(
x={'x': image_data}, batch_size=batch_size, shuffle=False)
predict_input_fn = numpy_io.numpy_input_fn(
x={'x': image_data}, shuffle=False)
train_input_fn = self._numpy_input_fn_wrapper(train_input_fn, batch_size,
label_size)
eval_input_fn = self._numpy_input_fn_wrapper(eval_input_fn, batch_size,
label_size)
predict_input_fn = self._numpy_input_fn_wrapper(predict_input_fn,
batch_size, label_size)
predict_input_fn = estimator.stargan_prediction_input_fn_wrapper(
predict_input_fn)
self._test_complete_flow(
train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
predict_input_fn=predict_input_fn,
prediction_size=[batch_size, img_size, img_size, channel_size])
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:33,代码来源:stargan_estimator_test.py
示例5: test_numpy_input_fn_lrdecay
def test_numpy_input_fn_lrdecay(self):
"""Tests complete flow with numpy_input_fn."""
input_dim = 4
batch_size = 5
data = np.zeros([batch_size, input_dim])
train_input_fn = numpy_io.numpy_input_fn(
x={'x': data},
y=data,
batch_size=batch_size,
num_epochs=None,
shuffle=True)
eval_input_fn = numpy_io.numpy_input_fn(
x={'x': data},
y=data,
batch_size=batch_size,
shuffle=False)
predict_input_fn = numpy_io.numpy_input_fn(
x={'x': data},
batch_size=batch_size,
shuffle=False)
self._test_complete_flow(
train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
predict_input_fn=predict_input_fn,
prediction_size=[batch_size, input_dim],
lr_decay=True)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:27,代码来源:gan_estimator_test.py
示例6: train_and_eval
def train_and_eval():
"""Train and evaluate the model."""
model_dir = tempfile.mkdtemp() if not FLAGS.model_dir else FLAGS.model_dir
print('model directory = %s' % model_dir)
est = build_estimator(model_dir)
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=False)
train_input_fn = numpy_io.numpy_input_fn(
x={'images': mnist.train.images},
y=mnist.train.labels.astype(numpy.int32),
batch_size=FLAGS.batch_size,
num_epochs=None,
shuffle=True)
est.fit(input_fn=train_input_fn, steps=None)
metric_name = 'accuracy'
metric = {
metric_name:
metric_spec.MetricSpec(
eval_metrics.get_metric(metric_name),
prediction_key=eval_metrics.get_prediction_key(metric_name))
}
test_input_fn = numpy_io.numpy_input_fn(
x={'images': mnist.test.images},
y=mnist.test.labels.astype(numpy.int32),
num_epochs=1,
batch_size=FLAGS.batch_size,
shuffle=False)
results = est.evaluate(input_fn=test_input_fn, metrics=metric)
for key in sorted(results):
print('%s: %s' % (key, results[key]))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:35,代码来源:random_forest_mnist.py
示例7: get_resource_for_simple_model
def get_resource_for_simple_model(is_sequential, is_evaluate):
model = simple_sequential_model(
) if is_sequential else simple_functional_model()
if is_sequential:
model.build()
input_name = model.input_names[0]
np.random.seed(_RANDOM_SEED)
(x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
train_samples=_TRAIN_SIZE,
test_samples=50,
input_shape=_INPUT_SIZE,
num_classes=_NUM_CLASS)
y_train = keras.utils.to_categorical(y_train)
y_test = keras.utils.to_categorical(y_test)
train_input_fn = numpy_io.numpy_input_fn(
x={input_name: x_train},
y=y_train,
shuffle=False,
num_epochs=None,
batch_size=16)
evaluate_input_fn = numpy_io.numpy_input_fn(
x={input_name: x_test}, y=y_test, num_epochs=1, shuffle=False)
predict_input_fn = numpy_io.numpy_input_fn(
x={input_name: x_test}, num_epochs=1, shuffle=False)
inference_input_fn = evaluate_input_fn if is_evaluate else predict_input_fn
return model, (x_train, y_train), (x_test,
y_test), train_input_fn, inference_input_fn
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:32,代码来源:estimator_test.py
示例8: testNumpyInputFnWithNonBoolShuffle
def testNumpyInputFnWithNonBoolShuffle(self):
x = np.arange(32, 36)
y = np.arange(4)
with self.test_session():
with self.assertRaisesRegexp(TypeError,
'shuffle must be explicitly set as boolean'):
# Default shuffle is None.
numpy_io.numpy_input_fn(x, y)
开发者ID:SylChan,项目名称:tensorflow,代码行数:8,代码来源:numpy_io_test.py
示例9: test_complete_flow_with_a_simple_linear_model
def test_complete_flow_with_a_simple_linear_model(self):
def _model_fn(features, labels, mode):
predictions = layers.dense(
features['x'], 1, kernel_initializer=init_ops.zeros_initializer())
export_outputs = {
'predictions': export_output.RegressionOutput(predictions)
}
if mode == model_fn_lib.ModeKeys.PREDICT:
return model_fn_lib.EstimatorSpec(
mode, predictions=predictions, export_outputs=export_outputs)
loss = losses.mean_squared_error(labels, predictions)
train_op = training.GradientDescentOptimizer(learning_rate=0.5).minimize(
loss, training.get_global_step())
eval_metric_ops = {
'absolute_error': metrics_lib.mean_absolute_error(
labels, predictions)
}
return model_fn_lib.EstimatorSpec(
mode,
predictions=predictions,
loss=loss,
train_op=train_op,
eval_metric_ops=eval_metric_ops,
export_outputs=export_outputs)
est = estimator.Estimator(model_fn=_model_fn)
data = np.linspace(0., 1., 100, dtype=np.float32).reshape(-1, 1)
# TRAIN
# learn y = x
train_input_fn = numpy_io.numpy_input_fn(
x={'x': data}, y=data, batch_size=50, num_epochs=None, shuffle=True)
est.train(train_input_fn, steps=200)
# EVALUTE
eval_input_fn = numpy_io.numpy_input_fn(
x={'x': data}, y=data, batch_size=50, num_epochs=1, shuffle=True)
scores = est.evaluate(eval_input_fn)
self.assertEqual(200, scores['global_step'])
self.assertGreater(0.1, scores['absolute_error'])
# PREDICT
predict_input_fn = numpy_io.numpy_input_fn(
x={'x': data}, y=None, batch_size=10, num_epochs=1, shuffle=False)
predictions = list(est.predict(predict_input_fn))
self.assertAllClose(data, predictions, atol=0.01)
# EXPORT
feature_spec = {'x': parsing_ops.FixedLenFeature([1], dtypes.float32)}
serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn(
feature_spec)
export_dir = est.export_savedmodel(tempfile.mkdtemp(),
serving_input_receiver_fn)
self.assertTrue(gfile.Exists(export_dir))
开发者ID:LugarkPirog,项目名称:tensorflow,代码行数:58,代码来源:estimator_test.py
示例10: testNumpyInputFnWithNonBoolShuffle
def testNumpyInputFnWithNonBoolShuffle(self):
x = np.arange(32, 36)
y = np.arange(4)
with self.cached_session():
with self.assertRaisesRegexp(ValueError,
'shuffle must be provided and explicitly '
'set as boolean'):
# Default shuffle is None.
numpy_io.numpy_input_fn(x, y)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:9,代码来源:numpy_io_test.py
示例11: _get_regression_input_fns
def _get_regression_input_fns():
boston = base.load_boston()
data = boston.data.astype(np.float32)
labels = boston.target.astype(np.int32)
train_input_fn = numpy_io.numpy_input_fn(
x=data, y=labels, batch_size=506, num_epochs=None, shuffle=False)
predict_input_fn = numpy_io.numpy_input_fn(
x=data[:1,], y=None, batch_size=1, num_epochs=1, shuffle=False)
return train_input_fn, predict_input_fn
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:11,代码来源:random_forest_test.py
示例12: _get_classification_input_fns
def _get_classification_input_fns():
iris = base.load_iris()
data = iris.data.astype(np.float32)
labels = iris.target.astype(np.int32)
train_input_fn = numpy_io.numpy_input_fn(
x=data, y=labels, batch_size=150, num_epochs=None, shuffle=False)
predict_input_fn = numpy_io.numpy_input_fn(
x=data[:1,], y=None, batch_size=1, num_epochs=1, shuffle=False)
return train_input_fn, predict_input_fn
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:11,代码来源:random_forest_test.py
示例13: test_complete_flow_with_mode
def test_complete_flow_with_mode(self, distribution):
label_dimension = 2
input_dimension = label_dimension
batch_size = 10
data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32)
data = data.reshape(batch_size, label_dimension)
train_input_fn = self.dataset_input_fn(
x={'x': data},
y=data,
batch_size=batch_size // len(distribution.worker_devices),
shuffle=True)
eval_input_fn = numpy_io.numpy_input_fn(
x={'x': data}, y=data, batch_size=batch_size, shuffle=False)
predict_input_fn = numpy_io.numpy_input_fn(
x={'x': data}, batch_size=batch_size, shuffle=False)
linear_feature_columns = [
feature_column.numeric_column('x', shape=(input_dimension,))
]
dnn_feature_columns = [
feature_column.numeric_column('x', shape=(input_dimension,))
]
feature_columns = linear_feature_columns + dnn_feature_columns
estimator = dnn_linear_combined.DNNLinearCombinedRegressor(
linear_feature_columns=linear_feature_columns,
dnn_hidden_units=(2, 2),
dnn_feature_columns=dnn_feature_columns,
label_dimension=label_dimension,
model_dir=self._model_dir,
# TODO(isaprykin): Work around the colocate_with error.
dnn_optimizer=adagrad.AdagradOptimizer(0.001),
linear_optimizer=adagrad.AdagradOptimizer(0.001),
config=run_config.RunConfig(train_distribute=distribution))
num_steps = 10
estimator.train(train_input_fn, steps=num_steps)
scores = estimator.evaluate(eval_input_fn)
self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP])
self.assertIn('loss', six.iterkeys(scores))
predictions = np.array([
x[prediction_keys.PredictionKeys.PREDICTIONS]
for x in estimator.predict(predict_input_fn)
])
self.assertAllEqual((batch_size, label_dimension), predictions.shape)
feature_spec = feature_column.make_parse_example_spec(feature_columns)
serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn(
feature_spec)
export_dir = estimator.export_savedmodel(tempfile.mkdtemp(),
serving_input_receiver_fn)
self.assertTrue(gfile.Exists(export_dir))
开发者ID:bikong2,项目名称:tensorflow,代码行数:53,代码来源:estimator_integration_test.py
示例14: test_complete_flow
def test_complete_flow(self):
label_dimension = 2
batch_size = 10
feature_columns = [feature_column.numeric_column('x', shape=(2,))]
est = dnn.DNNRegressor(
hidden_units=(2, 2),
feature_columns=feature_columns,
label_dimension=label_dimension,
model_dir=self._model_dir)
data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32)
data = data.reshape(batch_size, label_dimension)
# TRAIN
# learn y = x
train_input_fn = numpy_io.numpy_input_fn(
x={'x': data},
y=data,
batch_size=batch_size,
num_epochs=None,
shuffle=True)
num_steps = 200
est.train(train_input_fn, steps=num_steps)
# EVALUTE
eval_input_fn = numpy_io.numpy_input_fn(
x={'x': data},
y=data,
batch_size=batch_size,
shuffle=False)
scores = est.evaluate(eval_input_fn)
self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP])
self.assertIn('loss', six.iterkeys(scores))
# PREDICT
predict_input_fn = numpy_io.numpy_input_fn(
x={'x': data},
batch_size=batch_size,
shuffle=False)
predictions = np.array([
x[prediction_keys.PredictionKeys.PREDICTIONS]
for x in est.predict(predict_input_fn)
])
self.assertAllEqual((batch_size, label_dimension), predictions.shape)
# TODO(ptucker): Deterministic test for predicted values?
# EXPORT
feature_spec = feature_column.make_parse_example_spec(feature_columns)
serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn(
feature_spec)
export_dir = est.export_savedmodel(tempfile.mkdtemp(),
serving_input_receiver_fn)
self.assertTrue(gfile.Exists(export_dir))
开发者ID:lldavuull,项目名称:tensorflow,代码行数:52,代码来源:dnn_test.py
示例15: main
def main(*args):
"""Creates an estimator for the boston house-prices datase.
References:
* This dataset concerns housing values in Boston suburbs.
It's based on the "Boston Housing Dataset" from University of California, Irvine,
which in turn was taken from the StatLib library maintained at Carnegie Mellon University.
Returns:
* https://archive.ics.uci.edu/ml/datasets/Housing
"""
# Load dataset
boston = datasets.load_boston()
x, y = boston.data, boston.target
# Split dataset into train / test
x_train, x_test, y_train, y_test = model_selection.train_test_split(
x, y, test_size=0.2, random_state=42)
# Scale data (training set) to 0 mean and unit standard deviation.
scaler = preprocessing.StandardScaler()
x_train = scaler.fit_transform(x_train)
def graph_fn(mode, features):
x = plx.layers.FullyConnected(
mode, num_units=32, activation='relu', dropout=0.3)(features['x'])
x = plx.layers.FullyConnected(mode, num_units=32, activation='relu', dropout=0.3)(x)
return plx.layers.FullyConnected(mode, num_units=1, dropout=0.3)(x)
def model_fn(features, labels, mode):
model = plx.models.Regressor(
mode, graph_fn=graph_fn,
loss_config=plx.configs.LossConfig(module='mean_squared_error'),
optimizer_config=plx.configs.OptimizerConfig(module='sgd', learning_rate=0.01),
summaries='all')
return model(features, labels)
estimator = plx.estimators.Estimator(model_fn=model_fn,
model_dir="/tmp/polyaxon_logs/boston")
estimator.train(input_fn=numpy_input_fn(
{'x': np.asarray(x_train, dtype=np.float32)}, np.expand_dims(y_train, axis=1),
shuffle=False, num_epochs=5000, batch_size=64))
x_test = scaler.transform(x_test)
estimator.evaluate(input_fn=numpy_input_fn(
{'x': np.asarray(x_test, dtype=np.float32)}, np.expand_dims(y_test, axis=1),
shuffle=False, num_epochs=1, batch_size=32))
开发者ID:AlexMikhalev,项目名称:polyaxon,代码行数:49,代码来源:boston.py
示例16: _quantile_regression_input_fns
def _quantile_regression_input_fns(two_dimension=False):
# The data generation is taken from
# http://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_quantile.html
np.random.seed(1)
def f(x):
"""The function to predict."""
return x * np.sin(x)
def g(x):
"""The function to predict."""
return x * np.cos(x)
# Training data.
x = np.atleast_2d(np.random.uniform(0, 10.0,
size=_QUANTILE_REGRESSION_SIZE)).T
x = x.astype(np.float32)
# Labels.
if not two_dimension:
y = f(x).ravel()
else:
y = np.column_stack((f(x).ravel(), g(x).ravel()))
# Add random noise.
dy = 1.5 + 1.0 * np.random.random(y.shape)
noise = np.random.normal(0, dy)
y += noise
y_original = y.astype(np.float32)
if not two_dimension:
y = y.reshape(_QUANTILE_REGRESSION_SIZE, 1)
train_input_fn = numpy_io.numpy_input_fn(
x=x,
y=y,
batch_size=_QUANTILE_REGRESSION_SIZE,
num_epochs=None,
shuffle=True)
# Test on the training data to make sure the predictions are calibrated.
test_input_fn = numpy_io.numpy_input_fn(
x=x,
y=y,
batch_size=_QUANTILE_REGRESSION_SIZE,
num_epochs=1,
shuffle=False)
return train_input_fn, test_input_fn, y_original
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:48,代码来源:estimator_test.py
示例17: testNumpyInputFnWithBatchSizeNotDividedByDataSize
def testNumpyInputFnWithBatchSizeNotDividedByDataSize(self):
batch_size = 2
a = np.arange(5) * 1.0
b = np.arange(32, 37)
x = {'a': a, 'b': b}
y = np.arange(-32, -27)
with self.test_session() as session:
input_fn = numpy_io.numpy_input_fn(
x, y, batch_size=batch_size, shuffle=False, num_epochs=1)
features, target = input_fn()
coord = coordinator.Coordinator()
threads = queue_runner_impl.start_queue_runners(session, coord=coord)
res = session.run([features, target])
self.assertAllEqual(res[0]['a'], [0, 1])
self.assertAllEqual(res[0]['b'], [32, 33])
self.assertAllEqual(res[1], [-32, -31])
res = session.run([features, target])
self.assertAllEqual(res[0]['a'], [2, 3])
self.assertAllEqual(res[0]['b'], [34, 35])
self.assertAllEqual(res[1], [-30, -29])
res = session.run([features, target])
self.assertAllEqual(res[0]['a'], [4])
self.assertAllEqual(res[0]['b'], [36])
self.assertAllEqual(res[1], [-28])
with self.assertRaises(errors.OutOfRangeError):
session.run([features, target])
coord.request_stop()
coord.join(threads)
开发者ID:ZhangXinNan,项目名称:tensorflow,代码行数:35,代码来源:numpy_io_test.py
示例18: test_dnn_and_linear_logits_are_added
def test_dnn_and_linear_logits_are_added(self):
with ops.Graph().as_default():
variables_lib.Variable([[1.0]], name='linear/linear_model/x/weights')
variables_lib.Variable([2.0], name='linear/linear_model/bias_weights')
variables_lib.Variable([[3.0]], name='dnn/hiddenlayer_0/kernel')
variables_lib.Variable([4.0], name='dnn/hiddenlayer_0/bias')
variables_lib.Variable([[5.0]], name='dnn/logits/kernel')
variables_lib.Variable([6.0], name='dnn/logits/bias')
variables_lib.Variable(1, name='global_step', dtype=dtypes.int64)
linear_testing_utils.save_variables_to_ckpt(self._model_dir)
x_column = feature_column.numeric_column('x')
est = dnn_linear_combined.DNNLinearCombinedRegressor(
linear_feature_columns=[x_column],
dnn_hidden_units=[1],
dnn_feature_columns=[x_column],
model_dir=self._model_dir)
input_fn = numpy_io.numpy_input_fn(
x={'x': np.array([[10.]])}, batch_size=1, shuffle=False)
# linear logits = 10*1 + 2 = 12
# dnn logits = (10*3 + 4)*5 + 6 = 176
# logits = dnn + linear = 176 + 12 = 188
self.assertAllClose(
{
prediction_keys.PredictionKeys.PREDICTIONS: [188.],
},
next(est.predict(input_fn=input_fn)))
开发者ID:1000sprites,项目名称:tensorflow,代码行数:27,代码来源:dnn_linear_combined_test.py
示例19: test_train_op_calls_both_dnn_and_linear
def test_train_op_calls_both_dnn_and_linear(self):
opt = gradient_descent.GradientDescentOptimizer(1.)
x_column = feature_column.numeric_column('x')
input_fn = numpy_io.numpy_input_fn(
x={'x': np.array([[0.], [1.]])},
y=np.array([[0.], [1.]]),
batch_size=1,
shuffle=False)
est = dnn_linear_combined.DNNLinearCombinedClassifier(
linear_feature_columns=[x_column],
# verifies linear_optimizer is used only for linear part.
linear_optimizer=self._mock_optimizer(opt, 'linear'),
dnn_hidden_units=(2, 2),
dnn_feature_columns=[x_column],
# verifies dnn_optimizer is used only for linear part.
dnn_optimizer=self._mock_optimizer(opt, 'dnn'),
model_dir=self._model_dir)
est.train(input_fn, steps=1)
# verifies train_op fires linear minimize op
self.assertEqual(100.,
checkpoint_utils.load_variable(
self._model_dir, 'linear_called'))
# verifies train_op fires dnn minimize op
self.assertEqual(100.,
checkpoint_utils.load_variable(
self._model_dir, 'dnn_called'))
开发者ID:1000sprites,项目名称:tensorflow,代码行数:26,代码来源:dnn_linear_combined_test.py
示例20: test_one_dim
def test_one_dim(self):
"""Asserts predictions for one-dimensional input and logits."""
dnn_testing_utils.create_checkpoint(
(([[.6, .5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]),
([[-1.], [1.]], [.3]),),
global_step=0,
model_dir=self._model_dir)
dnn_classifier = dnn.DNNClassifier(
hidden_units=(2, 2),
feature_columns=(feature_column.numeric_column('x'),),
model_dir=self._model_dir)
input_fn = numpy_io.numpy_input_fn(
x={'x': np.array([[10.]])}, batch_size=1, shuffle=False)
# Uses identical numbers as DNNModelTest.test_one_dim_logits.
# See that test for calculation of logits.
# logits = [-2.08] =>
# logistic = exp(-2.08)/(1 + exp(-2.08)) = 0.11105597
# probabilities = [1-logistic, logistic] = [0.88894403, 0.11105597]
# class_ids = argmax(probabilities) = [0]
predictions = next(dnn_classifier.predict(input_fn=input_fn))
self.assertAllClose([-2.08],
predictions[prediction_keys.PredictionKeys.LOGITS])
self.assertAllClose([0.11105597],
predictions[prediction_keys.PredictionKeys.LOGISTIC])
self.assertAllClose(
[0.88894403,
0.11105597], predictions[prediction_keys.PredictionKeys.PROBABILITIES])
self.assertAllClose([0],
predictions[prediction_keys.PredictionKeys.CLASS_IDS])
self.assertAllEqual([b'0'],
predictions[prediction_keys.PredictionKeys.CLASSES])
开发者ID:ajaybhat,项目名称:tensorflow,代码行数:32,代码来源:dnn_test.py
注:本文中的tensorflow.python.estimator.inputs.numpy_io.numpy_input_fn函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论