• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python sparse.as_dense_shapes函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.python.data.util.sparse.as_dense_shapes函数的典型用法代码示例。如果您正苦于以下问题:Python as_dense_shapes函数的具体用法?Python as_dense_shapes怎么用?Python as_dense_shapes使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了as_dense_shapes函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: tf_reduce_func

      def tf_reduce_func(*args):
        """A wrapper for Defun that facilitates shape inference."""
        for arg, shape in zip(
            args,
            nest.flatten(
                sparse.as_dense_shapes(self._state_shapes, self._state_classes))
            + nest.flatten(
                sparse.as_dense_shapes(input_dataset.output_shapes,
                                       input_dataset.output_classes))):
          arg.set_shape(shape)

        pivot = len(nest.flatten(self._state_shapes))
        nested_state_args = nest.pack_sequence_as(self._state_types,
                                                  args[:pivot])
        nested_state_args = sparse.deserialize_sparse_tensors(
            nested_state_args, self._state_types, self._state_shapes,
            self._state_classes)
        nested_input_args = nest.pack_sequence_as(input_dataset.output_types,
                                                  args[pivot:])
        nested_input_args = sparse.deserialize_sparse_tensors(
            nested_input_args, input_dataset.output_types,
            input_dataset.output_shapes, input_dataset.output_classes)

        ret = reduce_func(nested_state_args, nested_input_args)

        # Convert any `SparseTensorValue`s to `SparseTensor`s and all other
        # values to tensors.
        ret = nest.pack_sequence_as(ret, [
            sparse_tensor.SparseTensor.from_value(t)
            if sparse_tensor.is_sparse(t) else ops.convert_to_tensor(t)
            for t in nest.flatten(ret)
        ])

        # Extract shape information from the returned values.
        flat_new_state = nest.flatten(ret)
        flat_new_state_shapes.extend([t.get_shape() for t in flat_new_state])

        # Extract and validate type information from the returned values.
        for t, dtype in zip(flat_new_state, nest.flatten(self._state_types)):
          if t.dtype != dtype:
            raise TypeError(
                "The element types for the new state must match the initial "
                "state. Expected %s; got %s." %
                (self._state_types,
                 nest.pack_sequence_as(self._state_types,
                                       [t.dtype for t in flat_new_state])))

        dataset_ops._warn_if_collections("tf.contrib.data.group_by_reducer()")  # pylint: disable=protected-access

        # Serialize any sparse tensors.
        ret = nest.pack_sequence_as(
            ret,
            [t for t in nest.flatten(sparse.serialize_sparse_tensors(ret))])
        return nest.flatten(ret)
开发者ID:xman,项目名称:tensorflow,代码行数:54,代码来源:grouping.py


示例2: get_next

  def get_next(self, name=None):
    """Returns a nested structure of `tf.Tensor`s containing the next element.

    Args:
      name: (Optional.) A name for the created operation.

    Returns:
      A nested structure of `tf.Tensor` objects.
    """
    self._get_next_call_count += 1
    if self._get_next_call_count > GET_NEXT_CALL_WARNING_THRESHOLD:
      warnings.warn(GET_NEXT_CALL_WARNING_MESSAGE)

    return sparse.deserialize_sparse_tensors(
        nest.pack_sequence_as(self._output_types,
                              gen_dataset_ops.iterator_get_next(
                                  self._iterator_resource,
                                  output_types=nest.flatten(
                                      sparse.as_dense_types(
                                          self._output_types,
                                          self._output_classes)),
                                  output_shapes=nest.flatten(
                                      sparse.as_dense_shapes(
                                          self._output_shapes,
                                          self._output_classes)),
                                  name=name)), self._output_types,
        self._output_shapes, self._output_classes)
开发者ID:modkzs,项目名称:tensorflow,代码行数:27,代码来源:iterator_ops.py


示例3: tf_finalize_func

    def tf_finalize_func(*args):
      """A wrapper for Defun that facilitates shape inference."""
      for arg, shape in zip(
          args,
          nest.flatten(
              sparse.as_dense_shapes(self._state_shapes, self._state_classes))):
        arg.set_shape(shape)

      nested_args = nest.pack_sequence_as(self._state_types, args)
      nested_args = sparse.deserialize_sparse_tensors(
          nested_args, self._state_types, self._state_shapes,
          self._state_classes)

      ret = finalize_func(nested_args)

      # Convert any `SparseTensorValue`s to `SparseTensor`s and all other
      # values to tensors.
      ret = nest.pack_sequence_as(ret, [
          sparse_tensor.SparseTensor.from_value(t)
          if sparse_tensor.is_sparse(t) else ops.convert_to_tensor(t)
          for t in nest.flatten(ret)
      ])

      self._output_classes = sparse.get_classes(ret)
      self._output_shapes = nest.pack_sequence_as(
          ret, [t.get_shape() for t in nest.flatten(ret)])
      self._output_types = nest.pack_sequence_as(
          ret, [t.dtype for t in nest.flatten(ret)])

      dataset_ops._warn_if_collections("tf.contrib.data.group_by_reducer()")  # pylint: disable=protected-access

      # Serialize any sparse tensors.
      ret = nest.pack_sequence_as(
          ret, [t for t in nest.flatten(sparse.serialize_sparse_tensors(ret))])
      return nest.flatten(ret)
开发者ID:xman,项目名称:tensorflow,代码行数:35,代码来源:grouping.py


示例4: tf_key_func

    def tf_key_func(*args):
      """A wrapper for Defun that facilitates shape inference."""
      # Pass in shape information from the input_dataset.
      dense_shapes = sparse.as_dense_shapes(input_dataset.output_shapes,
                                            input_dataset.output_classes)
      for arg, shape in zip(args, nest.flatten(dense_shapes)):
        arg.set_shape(shape)

      nested_args = nest.pack_sequence_as(input_dataset.output_types, args)
      nested_args = sparse.deserialize_sparse_tensors(
          nested_args, input_dataset.output_types, input_dataset.output_shapes,
          input_dataset.output_classes)
      # pylint: disable=protected-access
      if dataset_ops._should_unpack_args(nested_args):
        ret = key_func(*nested_args)
      # pylint: enable=protected-access
      else:
        ret = key_func(nested_args)
      ret = ops.convert_to_tensor(ret)
      if ret.dtype != dtypes.int64 or ret.get_shape() != tensor_shape.scalar():
        raise ValueError(
            "`key_func` must return a single tf.int64 tensor. "
            "Got type=%s and shape=%s" % (ret.dtype, ret.get_shape()))
      dataset_ops._warn_if_collections("tf.contrib.data.group_by_reducer()")  # pylint: disable=protected-access
      return ret
开发者ID:xman,项目名称:tensorflow,代码行数:25,代码来源:grouping.py


示例5: tf_finalize_func

    def tf_finalize_func(*args):
      """A wrapper for Defun that facilitates shape inference."""
      for arg, shape in zip(
          args,
          nest.flatten(
              sparse.as_dense_shapes(self._state_shapes, self._state_classes))):
        arg.set_shape(shape)

      nested_args = nest.pack_sequence_as(self._state_types, args)
      nested_args = sparse.deserialize_sparse_tensors(
          nested_args, self._state_types, self._state_shapes,
          self._state_classes)

      ret = finalize_func(nested_args)

      # Convert any `SparseTensorValue`s to `SparseTensor`s and all other
      # values to tensors.
      ret = nest.pack_sequence_as(ret, [
          sparse_tensor.SparseTensor.from_value(t)
          if sparse_tensor.is_sparse(t) else ops.convert_to_tensor(t)
          for t in nest.flatten(ret)
      ])

      self._output_classes = sparse.get_classes(ret)
      self._output_shapes = nest.pack_sequence_as(
          ret, [t.get_shape() for t in nest.flatten(ret)])
      self._output_types = nest.pack_sequence_as(
          ret, [t.dtype for t in nest.flatten(ret)])

      # Serialize any sparse tensors.
      ret = nest.pack_sequence_as(
          ret, [t for t in nest.flatten(sparse.serialize_sparse_tensors(ret))])
      return nest.flatten(ret)
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:33,代码来源:grouping.py


示例6: _as_variant_tensor

 def _as_variant_tensor(self):
   return gen_dataset_ops.ignore_errors_dataset(
       self._input_dataset._as_variant_tensor(),  # pylint: disable=protected-access
       output_shapes=nest.flatten(
           sparse.as_dense_shapes(self.output_shapes, self.output_classes)),
       output_types=nest.flatten(
           sparse.as_dense_types(self.output_types, self.output_classes)))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:7,代码来源:error_ops.py


示例7: get_next_as_optional

def get_next_as_optional(iterator):
  """Returns an `Optional` that contains the next value from the iterator.

  If `iterator` has reached the end of the sequence, the returned `Optional`
  will have no value.

  Args:
    iterator: A `tf.data.Iterator` object.

  Returns:
    An `Optional` object representing the next value from the iterator (if it
    has one) or no value.
  """
  # pylint: disable=protected-access
  return optional_ops._OptionalImpl(
      gen_dataset_ops.iterator_get_next_as_optional(
          iterator._iterator_resource,
          output_types=nest.flatten(
              sparse.as_dense_types(iterator.output_types,
                                    iterator.output_classes)),
          output_shapes=nest.flatten(
              sparse.as_dense_shapes(iterator.output_shapes,
                                     iterator.output_classes))),
      structure.Structure._from_legacy_structure(iterator.output_types,
                                                 iterator.output_shapes,
                                                 iterator.output_classes))
开发者ID:ThunderQi,项目名称:tensorflow,代码行数:26,代码来源:iterator_ops.py


示例8: tf_map_func

    def tf_map_func(*args):
      """A wrapper for Defun that facilitates shape inference."""
      # Pass in shape information from the input_dataset.
      dense_shapes = sparse.as_dense_shapes(input_dataset.output_shapes,
                                            input_dataset.output_classes)
      for arg, shape in zip(args, nest.flatten(dense_shapes)):
        arg.set_shape(shape)

      nested_args = nest.pack_sequence_as(input_dataset.output_types, args)
      nested_args = sparse.deserialize_sparse_tensors(
          nested_args, input_dataset.output_types, input_dataset.output_shapes,
          input_dataset.output_classes)
      if dataset_ops._should_unpack_args(nested_args):  # pylint: disable=protected-access
        dataset = map_func(*nested_args)
      else:
        dataset = map_func(nested_args)

      if not isinstance(dataset, dataset_ops.Dataset):
        raise TypeError("`map_func` must return a `Dataset` object.")

      self._output_classes = dataset.output_classes
      self._output_types = dataset.output_types
      self._output_shapes = dataset.output_shapes

      return dataset._as_variant_tensor()  # pylint: disable=protected-access
开发者ID:AnddyWang,项目名称:tensorflow,代码行数:25,代码来源:interleave_ops.py


示例9: _as_variant_tensor

 def _as_variant_tensor(self):
   return gen_dataset_ops.set_stats_aggregator_dataset(
       self._input_dataset._as_variant_tensor(),  # pylint: disable=protected-access
       self._stats_aggregator._resource,  # pylint: disable=protected-access
       output_types=nest.flatten(
           sparse.as_dense_types(self.output_types, self.output_classes)),
       output_shapes=nest.flatten(
           sparse.as_dense_shapes(self.output_shapes, self.output_classes)))
开发者ID:kimr843,项目名称:tensorflow,代码行数:8,代码来源:stats_ops.py


示例10: _as_variant_tensor

 def _as_variant_tensor(self):
   return self._op_function(
       self._input_dataset._as_variant_tensor(),  # pylint: disable=protected-access
       self._tag,
       output_types=nest.flatten(
           sparse.as_dense_types(self.output_types, self.output_classes)),
       output_shapes=nest.flatten(
           sparse.as_dense_shapes(self.output_shapes, self.output_classes)))
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:8,代码来源:stats_ops.py


示例11: _as_variant_tensor

 def _as_variant_tensor(self):
   return gen_dataset_ops.random_dataset(
       seed=self._seed,
       seed2=self._seed2,
       output_shapes=nest.flatten(
           sparse.as_dense_shapes(self.output_shapes, self.output_classes)),
       output_types=nest.flatten(
           sparse.as_dense_types(self.output_types, self.output_classes)))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:8,代码来源:random_ops.py


示例12: _as_variant_tensor

 def _as_variant_tensor(self):
   # pylint: disable=protected-access
   return gen_dataset_ops.directed_interleave_dataset(
       self._selector_input._as_variant_tensor(),
       [data_input._as_variant_tensor() for data_input in self._data_inputs],
       output_shapes=nest.flatten(
           sparse.as_dense_shapes(self.output_shapes, self.output_classes)),
       output_types=nest.flatten(
           sparse.as_dense_types(self.output_types, self.output_classes)))
开发者ID:jfreedman0,项目名称:tensorflow,代码行数:9,代码来源:interleave_ops.py


示例13: _as_variant_tensor

 def _as_variant_tensor(self):
   return gen_dataset_ops.slide_dataset(
       self._input_dataset._as_variant_tensor(),  # pylint: disable=protected-access
       window_size=self._window_size,
       stride=self._stride,
       output_shapes=nest.flatten(
           sparse.as_dense_shapes(self.output_shapes, self.output_classes)),
       output_types=nest.flatten(
           sparse.as_dense_types(self.output_types, self.output_classes)))
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:9,代码来源:sliding.py


示例14: _as_variant_tensor

 def _as_variant_tensor(self):
   return gen_dataset_ops.dense_to_sparse_batch_dataset(
       self._input_dataset._as_variant_tensor(),  # pylint: disable=protected-access
       self._batch_size,
       row_shape=dataset_ops._partial_shape_to_tensor(self._row_shape),  # pylint: disable=protected-access
       output_shapes=nest.flatten(
           sparse.as_dense_shapes(self.output_shapes, self.output_classes)),
       output_types=nest.flatten(
           sparse.as_dense_types(self.output_types, self.output_classes)))
开发者ID:kimr843,项目名称:tensorflow,代码行数:9,代码来源:batching.py


示例15: __init__

  def __init__(self,
               dataset,
               devices,
               prefetch_buffer_size=1,
               source_device="/cpu:0"):
    self._dataset = dataset
    self._devices = devices
    self._source_device = source_device
    self._source_device_tensor = ops.convert_to_tensor(source_device)

    self._flat_output_shapes = nest.flatten(
        sparse.as_dense_shapes(self._dataset.output_shapes,
                               self._dataset.output_classes))
    self._flat_output_types = nest.flatten(
        sparse.as_dense_types(self._dataset.output_types,
                              self._dataset.output_classes))

    # Create the MultiDeviceIterator.
    with ops.device(self._source_device):
      self._multi_device_iterator_resource = (
          gen_dataset_ops.multi_device_iterator(
              devices=self._devices,
              shared_name="",
              container="",
              output_types=self._flat_output_types,
              output_shapes=self._flat_output_shapes))

      # The incarnation ID is used to ensure consistency between the per-device
      # iterators and the multi-device iterator.
      self._incarnation_id = gen_dataset_ops.multi_device_iterator_init(
          self._dataset._as_variant_tensor(),  # pylint: disable=protected-access
          self._multi_device_iterator_resource)

    # TODO(rohanj): Explore the possibility of the MultiDeviceIterator to
    # initialize the device side of the pipeline. This would allow the
    # MultiDeviceIterator to choose, for example, to move some transformations
    # into the device side from its input. It might be useful in rewriting.
    # Create the per device iterators.
    self._device_iterators = []
    i = 0
    for device in self._devices:
      ds = _PerDeviceGenerator(
          i, self._multi_device_iterator_resource, self._incarnation_id,
          self._source_device_tensor, device, self._dataset.output_shapes,
          self._dataset.output_types, self._dataset.output_classes)
      ds = ds.prefetch(prefetch_buffer_size)
      with ops.device(device):
        self._device_iterators.append(ds.make_initializable_iterator())
      i += 1

    device_iterator_initializers = [
        iterator.initializer for iterator in self._device_iterators
    ]
    self._initializer = control_flow_ops.group(*device_iterator_initializers)
开发者ID:StephenOman,项目名称:tensorflow,代码行数:54,代码来源:prefetching_ops.py


示例16: _as_variant_tensor

 def _as_variant_tensor(self):
   input_t = self._input_dataset._as_variant_tensor()  # pylint: disable=protected-access
   return gen_dataset_ops.scan_dataset(
       input_t,
       nest.flatten(self._initial_state),
       self._scan_func.captured_inputs,
       f=self._scan_func,
       output_types=nest.flatten(
           sparse.as_dense_types(self.output_types, self.output_classes)),
       output_shapes=nest.flatten(
           sparse.as_dense_shapes(self.output_shapes, self.output_classes)))
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:11,代码来源:scan_ops.py


示例17: _as_variant_tensor

 def _as_variant_tensor(self):
   return gen_dataset_ops.parallel_interleave_dataset(
       self._input_dataset._as_variant_tensor(),  # pylint: disable=protected-access
       self._map_func.captured_inputs,
       self._cycle_length,
       self._block_length,
       self._sloppy,
       f=self._map_func,
       output_types=nest.flatten(
           sparse.as_dense_types(self.output_types, self.output_classes)),
       output_shapes=nest.flatten(
           sparse.as_dense_shapes(self.output_shapes, self.output_classes)))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:12,代码来源:interleave_ops.py


示例18: _as_variant_tensor

 def _as_variant_tensor(self):
   # pylint: disable=protected-access
   return gen_dataset_ops.prepend_from_queue_and_padded_batch_dataset(
       self._input_dataset._as_variant_tensor(),
       batch_size=self._batch_size,
       padded_shapes=[
           ops.convert_to_tensor(s, dtype=dtypes.int64)
           for s in nest.flatten(self._padded_shapes)
       ],
       padding_values=nest.flatten(self._padding_values),
       output_shapes=nest.flatten(
           sparse.as_dense_shapes(self.output_shapes, self.output_classes)))
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:12,代码来源:tensor_queue_dataset.py


示例19: _as_variant_tensor

 def _as_variant_tensor(self):
   # pylint: disable=protected-access
   input_resource = self._input_dataset._as_variant_tensor()
   return gen_dataset_ops.map_and_batch_dataset(
       input_resource,
       self._map_func.captured_inputs,
       f=self._map_func,
       batch_size=self._batch_size,
       num_parallel_batches=self._num_parallel_batches,
       output_types=nest.flatten(
           sparse.as_dense_types(self.output_types, self.output_classes)),
       output_shapes=nest.flatten(
           sparse.as_dense_shapes(self.output_shapes, self.output_classes)))
开发者ID:Kongsea,项目名称:tensorflow,代码行数:13,代码来源:batching.py


示例20: _as_variant_tensor

 def _as_variant_tensor(self):
   # pylint: disable=protected-access
   input_resource = self._input_dataset._as_variant_tensor()
   return gen_dataset_ops.shuffle_and_repeat_dataset(
       input_resource,
       buffer_size=self._buffer_size,
       count=self._count,
       seed=self._seed,
       seed2=self._seed2,
       output_types=nest.flatten(
           sparse.as_dense_types(self.output_types, self.output_classes)),
       output_shapes=nest.flatten(
           sparse.as_dense_shapes(self.output_shapes, self.output_classes)))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:13,代码来源:shuffle_ops.py



注:本文中的tensorflow.python.data.util.sparse.as_dense_shapes函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python sparse.as_dense_types函数代码示例发布时间:2022-05-27
下一篇:
Python nest.pack_sequence_as函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap