本文整理汇总了Python中tensorflow.python.data.util.nest.pack_sequence_as函数的典型用法代码示例。如果您正苦于以下问题:Python pack_sequence_as函数的具体用法?Python pack_sequence_as怎么用?Python pack_sequence_as使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了pack_sequence_as函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: tf_finalize_func
def tf_finalize_func(*args):
"""A wrapper for Defun that facilitates shape inference."""
for arg, shape in zip(
args,
nest.flatten(
sparse.as_dense_shapes(self._state_shapes, self._state_classes))):
arg.set_shape(shape)
nested_args = nest.pack_sequence_as(self._state_types, args)
nested_args = sparse.deserialize_sparse_tensors(
nested_args, self._state_types, self._state_shapes,
self._state_classes)
ret = finalize_func(nested_args)
# Convert any `SparseTensorValue`s to `SparseTensor`s and all other
# values to tensors.
ret = nest.pack_sequence_as(ret, [
sparse_tensor.SparseTensor.from_value(t)
if sparse_tensor.is_sparse(t) else ops.convert_to_tensor(t)
for t in nest.flatten(ret)
])
self._output_classes = sparse.get_classes(ret)
self._output_shapes = nest.pack_sequence_as(
ret, [t.get_shape() for t in nest.flatten(ret)])
self._output_types = nest.pack_sequence_as(
ret, [t.dtype for t in nest.flatten(ret)])
dataset_ops._warn_if_collections("tf.contrib.data.group_by_reducer()") # pylint: disable=protected-access
# Serialize any sparse tensors.
ret = nest.pack_sequence_as(
ret, [t for t in nest.flatten(sparse.serialize_sparse_tensors(ret))])
return nest.flatten(ret)
开发者ID:xman,项目名称:tensorflow,代码行数:35,代码来源:grouping.py
示例2: from_value
def from_value(value):
"""Returns an `Optional` that wraps the given value.
Args:
value: A nested structure of `tf.Tensor` and/or `tf.SparseTensor` objects.
Returns:
An `Optional` that wraps `value`.
"""
# TODO(b/110122868): Consolidate this destructuring logic with the
# similar code in `Dataset.from_tensors()`.
with ops.name_scope("optional") as scope:
with ops.name_scope("value"):
value = nest.pack_sequence_as(value, [
sparse_tensor_lib.SparseTensor.from_value(t)
if sparse_tensor_lib.is_sparse(t) else ops.convert_to_tensor(
t, name="component_%d" % i)
for i, t in enumerate(nest.flatten(value))
])
encoded_value = nest.flatten(sparse.serialize_sparse_tensors(value))
output_classes = sparse.get_classes(value)
output_shapes = nest.pack_sequence_as(
value, [t.get_shape() for t in nest.flatten(value)])
output_types = nest.pack_sequence_as(
value, [t.dtype for t in nest.flatten(value)])
return _OptionalImpl(
gen_dataset_ops.optional_from_value(encoded_value, name=scope),
output_shapes, output_types, output_classes)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:30,代码来源:optional_ops.py
示例3: testFlattenAndPack
def testFlattenAndPack(self):
structure = ((3, 4), 5, (6, 7, (9, 10), 8))
flat = ["a", "b", "c", "d", "e", "f", "g", "h"]
self.assertEqual(nest.flatten(structure), [3, 4, 5, 6, 7, 9, 10, 8])
self.assertEqual(
nest.pack_sequence_as(structure, flat), (("a", "b"), "c",
("d", "e", ("f", "g"), "h")))
point = collections.namedtuple("Point", ["x", "y"])
structure = (point(x=4, y=2), ((point(x=1, y=0),),))
flat = [4, 2, 1, 0]
self.assertEqual(nest.flatten(structure), flat)
restructured_from_flat = nest.pack_sequence_as(structure, flat)
self.assertEqual(restructured_from_flat, structure)
self.assertEqual(restructured_from_flat[0].x, 4)
self.assertEqual(restructured_from_flat[0].y, 2)
self.assertEqual(restructured_from_flat[1][0][0].x, 1)
self.assertEqual(restructured_from_flat[1][0][0].y, 0)
self.assertEqual([5], nest.flatten(5))
self.assertEqual([np.array([5])], nest.flatten(np.array([5])))
self.assertEqual("a", nest.pack_sequence_as(5, ["a"]))
self.assertEqual(
np.array([5]), nest.pack_sequence_as("scalar", [np.array([5])]))
with self.assertRaisesRegexp(ValueError, "Structure is a scalar"):
nest.pack_sequence_as("scalar", [4, 5])
with self.assertRaisesRegexp(TypeError, "flat_sequence"):
nest.pack_sequence_as([4, 5], "bad_sequence")
with self.assertRaises(ValueError):
nest.pack_sequence_as([5, 6, [7, 8]], ["a", "b", "c"])
开发者ID:abidrahmank,项目名称:tensorflow,代码行数:33,代码来源:nest_test.py
示例4: tf_finalize_func
def tf_finalize_func(*args):
"""A wrapper for Defun that facilitates shape inference."""
for arg, shape in zip(
args,
nest.flatten(
sparse.as_dense_shapes(self._state_shapes, self._state_classes))):
arg.set_shape(shape)
nested_args = nest.pack_sequence_as(self._state_types, args)
nested_args = sparse.deserialize_sparse_tensors(
nested_args, self._state_types, self._state_shapes,
self._state_classes)
ret = finalize_func(nested_args)
# Convert any `SparseTensorValue`s to `SparseTensor`s and all other
# values to tensors.
ret = nest.pack_sequence_as(ret, [
sparse_tensor.SparseTensor.from_value(t)
if sparse_tensor.is_sparse(t) else ops.convert_to_tensor(t)
for t in nest.flatten(ret)
])
self._output_classes = sparse.get_classes(ret)
self._output_shapes = nest.pack_sequence_as(
ret, [t.get_shape() for t in nest.flatten(ret)])
self._output_types = nest.pack_sequence_as(
ret, [t.dtype for t in nest.flatten(ret)])
# Serialize any sparse tensors.
ret = nest.pack_sequence_as(
ret, [t for t in nest.flatten(sparse.serialize_sparse_tensors(ret))])
return nest.flatten(ret)
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:33,代码来源:grouping.py
示例5: tf_reduce_func
def tf_reduce_func(*args):
"""A wrapper for Defun that facilitates shape inference."""
for arg, shape in zip(
args,
nest.flatten(
sparse.as_dense_shapes(self._state_shapes, self._state_classes))
+ nest.flatten(
sparse.as_dense_shapes(input_dataset.output_shapes,
input_dataset.output_classes))):
arg.set_shape(shape)
pivot = len(nest.flatten(self._state_shapes))
nested_state_args = nest.pack_sequence_as(self._state_types,
args[:pivot])
nested_state_args = sparse.deserialize_sparse_tensors(
nested_state_args, self._state_types, self._state_shapes,
self._state_classes)
nested_input_args = nest.pack_sequence_as(input_dataset.output_types,
args[pivot:])
nested_input_args = sparse.deserialize_sparse_tensors(
nested_input_args, input_dataset.output_types,
input_dataset.output_shapes, input_dataset.output_classes)
ret = reduce_func(nested_state_args, nested_input_args)
# Convert any `SparseTensorValue`s to `SparseTensor`s and all other
# values to tensors.
ret = nest.pack_sequence_as(ret, [
sparse_tensor.SparseTensor.from_value(t)
if sparse_tensor.is_sparse(t) else ops.convert_to_tensor(t)
for t in nest.flatten(ret)
])
# Extract shape information from the returned values.
flat_new_state = nest.flatten(ret)
flat_new_state_shapes.extend([t.get_shape() for t in flat_new_state])
# Extract and validate type information from the returned values.
for t, dtype in zip(flat_new_state, nest.flatten(self._state_types)):
if t.dtype != dtype:
raise TypeError(
"The element types for the new state must match the initial "
"state. Expected %s; got %s." %
(self._state_types,
nest.pack_sequence_as(self._state_types,
[t.dtype for t in flat_new_state])))
dataset_ops._warn_if_collections("tf.contrib.data.group_by_reducer()") # pylint: disable=protected-access
# Serialize any sparse tensors.
ret = nest.pack_sequence_as(
ret,
[t for t in nest.flatten(sparse.serialize_sparse_tensors(ret))])
return nest.flatten(ret)
开发者ID:xman,项目名称:tensorflow,代码行数:54,代码来源:grouping.py
示例6: testPackDictOrder
def testPackDictOrder(self):
"""Packing orders dicts by key, including OrderedDicts."""
ordered = collections.OrderedDict([("d", 0), ("b", 0), ("a", 0), ("c", 0)])
plain = {"d": 0, "b": 0, "a": 0, "c": 0}
seq = [0, 1, 2, 3]
ordered_reconstruction = nest.pack_sequence_as(ordered, seq)
plain_reconstruction = nest.pack_sequence_as(plain, seq)
self.assertEqual(
collections.OrderedDict([("d", 3), ("b", 1), ("a", 0), ("c", 2)]),
ordered_reconstruction)
self.assertEqual({"d": 3, "b": 1, "a": 0, "c": 2}, plain_reconstruction)
开发者ID:abidrahmank,项目名称:tensorflow,代码行数:11,代码来源:nest_test.py
示例7: _check_shape
def _check_shape(*elements):
flatten_tensors = nest.flatten(elements)
flatten_shapes = nest.flatten(expected_shapes)
checked_tensors = [with_shape(shape, tensor)
for shape, tensor in zip(flatten_shapes,
flatten_tensors)]
return nest.pack_sequence_as(elements, checked_tensors)
开发者ID:bikong2,项目名称:tensorflow,代码行数:7,代码来源:batching.py
示例8: normalize_tensors
def normalize_tensors(tensors):
"""Converts a nested structure of tensor-like objects to tensors.
* `SparseTensor`-like inputs are converted to `SparseTensor`.
* `TensorArray` inputs are passed through.
* Everything else is converted to a dense `Tensor`.
Args:
tensors: A nested structure of tensor-like, list,
`SparseTensor`, `SparseTensorValue`, or `TensorArray` objects.
Returns:
A nested structure of tensor, `SparseTensor`, or `TensorArray` objects.
"""
flat_tensors = nest.flatten(tensors)
prepared = []
with ops.name_scope("normalize_tensors"):
for i, t in enumerate(flat_tensors):
if sparse_tensor_lib.is_sparse(t):
prepared.append(sparse_tensor_lib.SparseTensor.from_value(t))
elif ragged_tensor.is_ragged(t):
prepared.append(
ragged_tensor.convert_to_tensor_or_ragged_tensor(
t, name="component_%d" % i))
elif isinstance(t, tensor_array_ops.TensorArray):
prepared.append(t)
else:
prepared.append(ops.convert_to_tensor(t, name="component_%d" % i))
return nest.pack_sequence_as(tensors, prepared)
开发者ID:aritratony,项目名称:tensorflow,代码行数:29,代码来源:structure.py
示例9: tf_map_func
def tf_map_func(*args):
"""A wrapper for Defun that facilitates shape inference."""
# Pass in shape information from the input_dataset.
dense_shapes = sparse.as_dense_shapes(input_dataset.output_shapes,
input_dataset.output_classes)
for arg, shape in zip(args, nest.flatten(dense_shapes)):
arg.set_shape(shape)
nested_args = nest.pack_sequence_as(input_dataset.output_types, args)
nested_args = sparse.deserialize_sparse_tensors(
nested_args, input_dataset.output_types, input_dataset.output_shapes,
input_dataset.output_classes)
if dataset_ops._should_unpack_args(nested_args): # pylint: disable=protected-access
dataset = map_func(*nested_args)
else:
dataset = map_func(nested_args)
if not isinstance(dataset, dataset_ops.Dataset):
raise TypeError("`map_func` must return a `Dataset` object.")
self._output_classes = dataset.output_classes
self._output_types = dataset.output_types
self._output_shapes = dataset.output_shapes
return dataset._as_variant_tensor() # pylint: disable=protected-access
开发者ID:AnddyWang,项目名称:tensorflow,代码行数:25,代码来源:interleave_ops.py
示例10: get_next
def get_next(self, name=None):
"""See `tf.data.Iterator.get_next`."""
self._get_next_call_count += 1
if self._get_next_call_count > iterator_ops.GET_NEXT_CALL_WARNING_THRESHOLD:
warnings.warn(iterator_ops.GET_NEXT_CALL_WARNING_MESSAGE)
flat_result = []
# TODO(priyag): This will fail if the input size (typically number of
# batches) is not divisible by number of devices.
# How do we handle that more gracefully / let the user know?
for buffer_resource in self._buffering_resources:
flat_ret = gen_dataset_ops.function_buffering_resource_get_next(
buffer_resource,
output_types=data_nest.flatten(sparse.as_dense_types(
self.output_types, self.output_classes)), name=name)
ret = sparse.deserialize_sparse_tensors(
data_nest.pack_sequence_as(self.output_types, flat_ret),
self.output_types, self.output_shapes, self.output_classes)
for tensor, shape in zip(
data_nest.flatten(ret), data_nest.flatten(self.output_shapes)):
if isinstance(tensor, ops.Tensor):
tensor.set_shape(shape)
flat_result.append(ret)
return nest.pack_sequence_as(self._devices, flat_result)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:27,代码来源:prefetching_ops_v2.py
示例11: get_next
def get_next(self, name=None):
"""Returns a nested structure of `tf.Tensor`s containing the next element.
Args:
name: (Optional.) A name for the created operation.
Returns:
A nested structure of `tf.Tensor` objects.
"""
self._get_next_call_count += 1
if self._get_next_call_count > GET_NEXT_CALL_WARNING_THRESHOLD:
warnings.warn(GET_NEXT_CALL_WARNING_MESSAGE)
return sparse.deserialize_sparse_tensors(
nest.pack_sequence_as(self._output_types,
gen_dataset_ops.iterator_get_next(
self._iterator_resource,
output_types=nest.flatten(
sparse.as_dense_types(
self._output_types,
self._output_classes)),
output_shapes=nest.flatten(
sparse.as_dense_shapes(
self._output_shapes,
self._output_classes)),
name=name)), self._output_types,
self._output_shapes, self._output_classes)
开发者ID:modkzs,项目名称:tensorflow,代码行数:27,代码来源:iterator_ops.py
示例12: tf_key_func
def tf_key_func(*args):
"""A wrapper for Defun that facilitates shape inference."""
# Pass in shape information from the input_dataset.
dense_shapes = sparse.as_dense_shapes(input_dataset.output_shapes,
input_dataset.output_classes)
for arg, shape in zip(args, nest.flatten(dense_shapes)):
arg.set_shape(shape)
nested_args = nest.pack_sequence_as(input_dataset.output_types, args)
nested_args = sparse.deserialize_sparse_tensors(
nested_args, input_dataset.output_types, input_dataset.output_shapes,
input_dataset.output_classes)
# pylint: disable=protected-access
if dataset_ops._should_unpack_args(nested_args):
ret = key_func(*nested_args)
# pylint: enable=protected-access
else:
ret = key_func(nested_args)
ret = ops.convert_to_tensor(ret)
if ret.dtype != dtypes.int64 or ret.get_shape() != tensor_shape.scalar():
raise ValueError(
"`key_func` must return a single tf.int64 tensor. "
"Got type=%s and shape=%s" % (ret.dtype, ret.get_shape()))
dataset_ops._warn_if_collections("tf.contrib.data.group_by_reducer()") # pylint: disable=protected-access
return ret
开发者ID:xman,项目名称:tensorflow,代码行数:25,代码来源:grouping.py
示例13: _next_internal
def _next_internal(self):
"""Returns a nested structure of `tf.Tensor`s containing the next element.
"""
with ops.device(self._device):
if self._buffer_resource_handle is not None:
ret = prefetching_ops.function_buffering_resource_get_next(
function_buffer_resource=self._buffer_resource_handle,
output_types=self._flat_output_types)
else:
# TODO(ashankar): Consider removing this ops.device() contextmanager
# and instead mimic ops placement in graphs: Operations on resource
# handles execute on the same device as where the resource is placed.
# NOTE(mrry): Here we use the "_sync" variant of `iterator_get_next`
# because in eager mode this code will run synchronously on the calling
# thread. Therefore we do not need to make a defensive context switch
# to a background thread, and can achieve a small constant performance
# boost by invoking the iterator synchronously.
ret = gen_dataset_ops.iterator_get_next_sync(
self._resource,
output_types=self._flat_output_types,
output_shapes=self._flat_output_shapes)
return sparse.deserialize_sparse_tensors(
nest.pack_sequence_as(self._output_types, ret), self._output_types,
self._output_shapes, self._output_classes)
开发者ID:DILASSS,项目名称:tensorflow,代码行数:25,代码来源:datasets.py
示例14: generator_map_fn
def generator_map_fn(iterator_id_t):
"""Generates the next element from iterator with ID `iterator_id_t`.
We map this function across an infinite repetition of the
`iterator_id_t`, and raise `StopIteration` to terminate the iteration.
Args:
iterator_id_t: A `tf.int64` tensor whose value uniquely identifies
the iterator in `generator_state` from which to generate an element.
Returns:
A nested structure of tensors representing an element from the iterator.
"""
def generator_py_func(iterator_id):
"""A `py_func` that will be called to invoke the iterator."""
try:
values = next(generator_state.get_iterator(iterator_id))
except StopIteration:
generator_state.iterator_completed(iterator_id)
raise StopIteration("Iteration finished.")
# Use the same _convert function from the py_func() implementation to
# convert the returned values to arrays early, so that we can inspect
# their values.
# pylint: disable=protected-access
ret_arrays = [
script_ops.FuncRegistry._convert(ret, dtype=dtype.as_numpy_dtype)
for ret, dtype in zip(nest.flatten_up_to(output_types, values),
flattened_types)
]
# pylint: enable=protected-access
# Additional type and shape checking to ensure that the components
# of the generated element match the `output_types` and `output_shapes`
# arguments.
for (ret_array, expected_dtype, expected_shape) in zip(
ret_arrays, flattened_types, flattened_shapes):
if ret_array.dtype != expected_dtype.as_numpy_dtype:
raise TypeError(
"`generator` yielded an element of type %s where an element "
"of type %s was expected." % (ret_array.dtype,
expected_dtype.as_numpy_dtype))
if not expected_shape.is_compatible_with(ret_array.shape):
raise ValueError(
"`generator` yielded an element of shape %s where an element "
"of shape %s was expected." % (ret_array.shape, expected_shape))
return ret_arrays
flat_values = script_ops.py_func(
generator_py_func, [iterator_id_t], flattened_types, stateful=True)
# The `py_func()` op drops the inferred shapes, so we add them back in
# here.
if output_shapes is not None:
for ret_t, shape in zip(flat_values, flattened_shapes):
ret_t.set_shape(shape)
return nest.pack_sequence_as(output_types, flat_values)
开发者ID:Mazecreator,项目名称:tensorflow,代码行数:60,代码来源:dataset_ops.py
示例15: _make_reduce_func
def _make_reduce_func(self, reduce_func, input_dataset):
"""Make wrapping defun for reduce_func."""
# Iteratively rerun the reduce function until reaching a fixed point on
# `self._state_shapes`.
need_to_rerun = True
while need_to_rerun:
wrapped_func = dataset_ops.StructuredFunctionWrapper(
reduce_func,
self._transformation_name(),
input_classes=(self._state_classes, input_dataset.output_classes),
input_shapes=(self._state_shapes, input_dataset.output_shapes),
input_types=(self._state_types, input_dataset.output_types),
add_to_graph=False)
# Extract and validate class information from the returned values.
for new_state_class, state_class in zip(
nest.flatten(wrapped_func.output_classes),
nest.flatten(self._state_classes)):
if not issubclass(new_state_class, state_class):
raise TypeError(
"The element classes for the new state must match the initial "
"state. Expected %s; got %s." %
(self._state_classes, wrapped_func.output_classes))
# Extract and validate type information from the returned values.
for new_state_type, state_type in zip(
nest.flatten(wrapped_func.output_types),
nest.flatten(self._state_types)):
if new_state_type != state_type:
raise TypeError(
"The element types for the new state must match the initial "
"state. Expected %s; got %s." %
(self._state_types, wrapped_func.output_types))
# Extract shape information from the returned values.
flat_state_shapes = nest.flatten(self._state_shapes)
flat_new_state_shapes = nest.flatten(wrapped_func.output_shapes)
weakened_state_shapes = [
original.most_specific_compatible_shape(new)
for original, new in zip(flat_state_shapes, flat_new_state_shapes)
]
need_to_rerun = False
for original_shape, weakened_shape in zip(flat_state_shapes,
weakened_state_shapes):
if original_shape.ndims is not None and (
weakened_shape.ndims is None or
original_shape.as_list() != weakened_shape.as_list()):
need_to_rerun = True
break
if need_to_rerun:
self._state_shapes = nest.pack_sequence_as(self._state_shapes,
weakened_state_shapes)
self._reduce_func = wrapped_func.function
self._reduce_func.add_to_graph(ops.get_default_graph())
开发者ID:bunbutter,项目名称:tensorflow,代码行数:59,代码来源:grouping.py
示例16: _merge_output_shapes
def _merge_output_shapes(original_shapes, expected_shapes):
flat_original_shapes = nest.flatten(original_shapes)
flat_new_shapes = nest.flatten_up_to(original_shapes, expected_shapes)
flat_merged_output_shapes = [
original_shape.merge_with(new_shape)
for original_shape, new_shape in zip(flat_original_shapes,
flat_new_shapes)]
return nest.pack_sequence_as(original_shapes, flat_merged_output_shapes)
开发者ID:Jordan1237,项目名称:tensorflow,代码行数:8,代码来源:batching.py
示例17: output_shapes
def output_shapes(self):
ret = self._data_inputs[0].output_shapes
for data_input in self._data_inputs[1:]:
ret = nest.pack_sequence_as(ret, [
ts1.most_specific_compatible_shape(ts2) for (ts1, ts2) in zip(
nest.flatten(ret), nest.flatten(data_input.output_shapes))
])
return ret
开发者ID:AnishShah,项目名称:tensorflow,代码行数:8,代码来源:interleave_ops.py
示例18: convert_legacy_structure
def convert_legacy_structure(output_types, output_shapes, output_classes):
"""Returns a `Structure` that represents the given legacy structure.
This method provides a way to convert from the existing `Dataset` and
`Iterator` structure-related properties to a `Structure` object. A "legacy"
structure is represented by the `tf.data.Dataset.output_types`,
`tf.data.Dataset.output_shapes`, and `tf.data.Dataset.output_classes`
properties.
TODO(b/110122868): Remove this function once `Structure` is used throughout
`tf.data`.
Args:
output_types: A nested structure of `tf.DType` objects corresponding to
each component of a structured value.
output_shapes: A nested structure of `tf.TensorShape` objects
corresponding to each component a structured value.
output_classes: A nested structure of Python `type` objects corresponding
to each component of a structured value.
Returns:
A `Structure`.
Raises:
TypeError: If a structure cannot be built from the arguments, because one of
the component classes in `output_classes` is not supported.
"""
flat_types = nest.flatten(output_types)
flat_shapes = nest.flatten(output_shapes)
flat_classes = nest.flatten(output_classes)
flat_ret = []
for flat_type, flat_shape, flat_class in zip(flat_types, flat_shapes,
flat_classes):
if isinstance(flat_class, Structure):
flat_ret.append(flat_class)
elif issubclass(flat_class, sparse_tensor_lib.SparseTensor):
flat_ret.append(SparseTensorStructure(flat_type, flat_shape))
elif issubclass(flat_class, ops.Tensor):
flat_ret.append(TensorStructure(flat_type, flat_shape))
elif issubclass(flat_class, tensor_array_ops.TensorArray):
# We sneaked the dynamic_size and infer_shape into the legacy shape.
flat_ret.append(
TensorArrayStructure(
flat_type, flat_shape[2:],
dynamic_size=tensor_shape.dimension_value(flat_shape[0]),
infer_shape=tensor_shape.dimension_value(flat_shape[1])))
else:
# NOTE(mrry): Since legacy structures produced by iterators only
# comprise Tensors, SparseTensors, and nests, we do not need to
# support all structure types here.
raise TypeError(
"Could not build a structure for output class %r" % (flat_class,))
ret = nest.pack_sequence_as(output_classes, flat_ret)
if isinstance(ret, Structure):
return ret
else:
return NestedStructure(ret)
开发者ID:aritratony,项目名称:tensorflow,代码行数:58,代码来源:structure.py
示例19: _from_tensor_list
def _from_tensor_list(self, flat_value):
if len(flat_value) != len(self._flat_types):
raise ValueError("Expected %d flat values in NestedStructure but got %d."
% (len(self._flat_types), len(flat_value)))
flat_ret = []
for sub_value, structure in zip(flat_value, self._flat_nested_structure):
flat_ret.append(structure._from_tensor_list([sub_value]))
return nest.pack_sequence_as(self._nested_structure, flat_ret)
开发者ID:bunbutter,项目名称:tensorflow,代码行数:10,代码来源:structure.py
示例20: make_padded_shapes
def make_padded_shapes(shapes, none_filler=None):
padded = []
for shape in nest.flatten(shapes):
shape = tensor_shape.TensorShape(shape)
shape = [
none_filler if tensor_shape.dimension_value(d) is None else d
for d in shape
]
padded.append(shape)
return nest.pack_sequence_as(shapes, padded)
开发者ID:bunbutter,项目名称:tensorflow,代码行数:10,代码来源:grouping.py
注:本文中的tensorflow.python.data.util.nest.pack_sequence_as函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论