本文整理汇总了Python中tensorflow.contrib.slim.python.slim.nets.resnet_utils.resnet_arg_scope函数的典型用法代码示例。如果您正苦于以下问题:Python resnet_arg_scope函数的具体用法?Python resnet_arg_scope怎么用?Python resnet_arg_scope使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了resnet_arg_scope函数的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testAtrousFullyConvolutionalValues
def testAtrousFullyConvolutionalValues(self):
"""Verify dense feature extraction with atrous convolution."""
nominal_stride = 32
for output_stride in [4, 8, 16, 32, None]:
with arg_scope(resnet_utils.resnet_arg_scope()):
with ops.Graph().as_default():
with self.test_session() as sess:
random_seed.set_random_seed(0)
inputs = create_test_input(2, 81, 81, 3)
# Dense feature extraction followed by subsampling.
output, _ = self._resnet_small(
inputs,
None,
is_training=False,
global_pool=False,
output_stride=output_stride)
if output_stride is None:
factor = 1
else:
factor = nominal_stride // output_stride
output = resnet_utils.subsample(output, factor)
# Make the two networks use the same weights.
variable_scope.get_variable_scope().reuse_variables()
# Feature extraction at the nominal network rate.
expected, _ = self._resnet_small(
inputs, None, is_training=False, global_pool=False)
sess.run(variables.global_variables_initializer())
self.assertAllClose(
output.eval(), expected.eval(), atol=1e-4, rtol=1e-4)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:29,代码来源:resnet_v2_test.py
示例2: testEndPointsV2
def testEndPointsV2(self):
"""Test the end points of a tiny v2 bottleneck network."""
blocks = [
resnet_v2.resnet_v2_block(
'block1', base_depth=1, num_units=2, stride=2),
resnet_v2.resnet_v2_block(
'block2', base_depth=2, num_units=2, stride=1),
]
inputs = create_test_input(2, 32, 16, 3)
with arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_plain(inputs, blocks, scope='tiny')
expected = [
'tiny/block1/unit_1/bottleneck_v2/shortcut',
'tiny/block1/unit_1/bottleneck_v2/conv1',
'tiny/block1/unit_1/bottleneck_v2/conv2',
'tiny/block1/unit_1/bottleneck_v2/conv3',
'tiny/block1/unit_2/bottleneck_v2/conv1',
'tiny/block1/unit_2/bottleneck_v2/conv2',
'tiny/block1/unit_2/bottleneck_v2/conv3',
'tiny/block2/unit_1/bottleneck_v2/shortcut',
'tiny/block2/unit_1/bottleneck_v2/conv1',
'tiny/block2/unit_1/bottleneck_v2/conv2',
'tiny/block2/unit_1/bottleneck_v2/conv3',
'tiny/block2/unit_2/bottleneck_v2/conv1',
'tiny/block2/unit_2/bottleneck_v2/conv2',
'tiny/block2/unit_2/bottleneck_v2/conv3'
]
self.assertItemsEqual(expected, end_points)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:28,代码来源:resnet_v2_test.py
示例3: testEndPointsV2
def testEndPointsV2(self):
"""Test the end points of a tiny v2 bottleneck network."""
bottleneck = resnet_v2.bottleneck
blocks = [
resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]),
resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])
]
inputs = create_test_input(2, 32, 16, 3)
with arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_plain(inputs, blocks, scope='tiny')
expected = [
'tiny/block1/unit_1/bottleneck_v2/shortcut',
'tiny/block1/unit_1/bottleneck_v2/conv1',
'tiny/block1/unit_1/bottleneck_v2/conv2',
'tiny/block1/unit_1/bottleneck_v2/conv3',
'tiny/block1/unit_2/bottleneck_v2/conv1',
'tiny/block1/unit_2/bottleneck_v2/conv2',
'tiny/block1/unit_2/bottleneck_v2/conv3',
'tiny/block2/unit_1/bottleneck_v2/shortcut',
'tiny/block2/unit_1/bottleneck_v2/conv1',
'tiny/block2/unit_1/bottleneck_v2/conv2',
'tiny/block2/unit_1/bottleneck_v2/conv3',
'tiny/block2/unit_2/bottleneck_v2/conv1',
'tiny/block2/unit_2/bottleneck_v2/conv2',
'tiny/block2/unit_2/bottleneck_v2/conv3'
]
self.assertItemsEqual(expected, end_points)
开发者ID:Immexxx,项目名称:tensorflow,代码行数:27,代码来源:resnet_v2_test.py
示例4: testClassificationEndPoints
def testClassificationEndPoints(self):
global_pool = True
num_classes = 10
inputs = create_test_input(2, 224, 224, 3)
with arg_scope(resnet_utils.resnet_arg_scope()):
logits, end_points = self._resnet_small(
inputs, num_classes, global_pool=global_pool, scope='resnet')
self.assertTrue(logits.op.name.startswith('resnet/logits'))
self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes])
self.assertTrue('predictions' in end_points)
self.assertListEqual(end_points['predictions'].get_shape().as_list(),
[2, 1, 1, num_classes])
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:12,代码来源:resnet_v2_test.py
示例5: testFullyConvolutionalUnknownHeightWidth
def testFullyConvolutionalUnknownHeightWidth(self):
batch = 2
height, width = 65, 65
global_pool = False
inputs = create_test_input(batch, None, None, 3)
with arg_scope(resnet_utils.resnet_arg_scope()):
output, _ = self._resnet_small(inputs, None, global_pool=global_pool)
self.assertListEqual(output.get_shape().as_list(), [batch, None, None, 32])
images = create_test_input(batch, height, width, 3)
with self.test_session() as sess:
sess.run(variables.global_variables_initializer())
output = sess.run(output, {inputs: images.eval()})
self.assertEqual(output.shape, (batch, 3, 3, 32))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:13,代码来源:resnet_v2_test.py
示例6: testFullyConvolutionalEndpointShapes
def testFullyConvolutionalEndpointShapes(self):
global_pool = False
num_classes = 10
inputs = create_test_input(2, 321, 321, 3)
with arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_small(
inputs, num_classes, global_pool=global_pool, scope='resnet')
endpoint_to_shape = {
'resnet/block1': [2, 41, 41, 4],
'resnet/block2': [2, 21, 21, 8],
'resnet/block3': [2, 11, 11, 16],
'resnet/block4': [2, 11, 11, 32]
}
for endpoint in endpoint_to_shape:
shape = endpoint_to_shape[endpoint]
self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:16,代码来源:resnet_v2_test.py
示例7: testClassificationShapes
def testClassificationShapes(self):
global_pool = True
num_classes = 10
inputs = create_test_input(2, 224, 224, 3)
with arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_small(
inputs, num_classes, global_pool=global_pool, scope='resnet')
endpoint_to_shape = {
'resnet/block1': [2, 28, 28, 4],
'resnet/block2': [2, 14, 14, 8],
'resnet/block3': [2, 7, 7, 16],
'resnet/block4': [2, 7, 7, 32]
}
for endpoint in endpoint_to_shape:
shape = endpoint_to_shape[endpoint]
self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:16,代码来源:resnet_v2_test.py
示例8: testUnknownBatchSize
def testUnknownBatchSize(self):
batch = 2
height, width = 65, 65
global_pool = True
num_classes = 10
inputs = create_test_input(None, height, width, 3)
with arg_scope(resnet_utils.resnet_arg_scope()):
logits, _ = self._resnet_small(
inputs, num_classes, global_pool=global_pool, scope='resnet')
self.assertTrue(logits.op.name.startswith('resnet/logits'))
self.assertListEqual(logits.get_shape().as_list(),
[None, 1, 1, num_classes])
images = create_test_input(batch, height, width, 3)
with self.test_session() as sess:
sess.run(variables.global_variables_initializer())
output = sess.run(logits, {inputs: images.eval()})
self.assertEqual(output.shape, (batch, 1, 1, num_classes))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:17,代码来源:resnet_v2_test.py
示例9: _atrousValues
def _atrousValues(self, bottleneck):
"""Verify the values of dense feature extraction by atrous convolution.
Make sure that dense feature extraction by stack_blocks_dense() followed by
subsampling gives identical results to feature extraction at the nominal
network output stride using the simple self._stack_blocks_nondense() above.
Args:
bottleneck: The bottleneck function.
"""
blocks = [
resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]),
resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 2)]),
resnet_utils.Block('block3', bottleneck, [(16, 4, 1), (16, 4, 2)]),
resnet_utils.Block('block4', bottleneck, [(32, 8, 1), (32, 8, 1)])
]
nominal_stride = 8
# Test both odd and even input dimensions.
height = 30
width = 31
with arg_scope(resnet_utils.resnet_arg_scope(is_training=False)):
for output_stride in [1, 2, 4, 8, None]:
with ops.Graph().as_default():
with self.test_session() as sess:
random_seed.set_random_seed(0)
inputs = create_test_input(1, height, width, 3)
# Dense feature extraction followed by subsampling.
output = resnet_utils.stack_blocks_dense(inputs, blocks,
output_stride)
if output_stride is None:
factor = 1
else:
factor = nominal_stride // output_stride
output = resnet_utils.subsample(output, factor)
# Make the two networks use the same weights.
variable_scope.get_variable_scope().reuse_variables()
# Feature extraction at the nominal network rate.
expected = self._stack_blocks_nondense(inputs, blocks)
sess.run(variables.global_variables_initializer())
output, expected = sess.run([output, expected])
self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4)
开发者ID:Immexxx,项目名称:tensorflow,代码行数:43,代码来源:resnet_v2_test.py
示例10: testAtrousValuesBottleneck
def testAtrousValuesBottleneck(self):
"""Verify the values of dense feature extraction by atrous convolution.
Make sure that dense feature extraction by stack_blocks_dense() followed by
subsampling gives identical results to feature extraction at the nominal
network output stride using the simple self._stack_blocks_nondense() above.
"""
block = resnet_v2.resnet_v2_block
blocks = [
block('block1', base_depth=1, num_units=2, stride=2),
block('block2', base_depth=2, num_units=2, stride=2),
block('block3', base_depth=4, num_units=2, stride=2),
block('block4', base_depth=8, num_units=2, stride=1),
]
nominal_stride = 8
# Test both odd and even input dimensions.
height = 30
width = 31
with arg_scope(resnet_utils.resnet_arg_scope()):
with arg_scope([layers.batch_norm], is_training=False):
for output_stride in [1, 2, 4, 8, None]:
with ops.Graph().as_default():
with self.test_session() as sess:
random_seed.set_random_seed(0)
inputs = create_test_input(1, height, width, 3)
# Dense feature extraction followed by subsampling.
output = resnet_utils.stack_blocks_dense(inputs, blocks,
output_stride)
if output_stride is None:
factor = 1
else:
factor = nominal_stride // output_stride
output = resnet_utils.subsample(output, factor)
# Make the two networks use the same weights.
variable_scope.get_variable_scope().reuse_variables()
# Feature extraction at the nominal network rate.
expected = self._stack_blocks_nondense(inputs, blocks)
sess.run(variables.global_variables_initializer())
output, expected = sess.run([output, expected])
self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:42,代码来源:resnet_v2_test.py
示例11: _testDeprecatingIsTraining
def _testDeprecatingIsTraining(self, network_fn):
batch_norm_fn = layers.batch_norm
@add_arg_scope
def batch_norm_expect_is_training(*args, **kwargs):
assert kwargs['is_training']
return batch_norm_fn(*args, **kwargs)
@add_arg_scope
def batch_norm_expect_is_not_training(*args, **kwargs):
assert not kwargs['is_training']
return batch_norm_fn(*args, **kwargs)
global_pool = True
num_classes = 10
inputs = create_test_input(2, 224, 224, 3)
# Default argument for resnet_arg_scope
layers.batch_norm = batch_norm_expect_is_training
with arg_scope(resnet_utils.resnet_arg_scope()):
network_fn(inputs, num_classes, global_pool=global_pool, scope='resnet1')
layers.batch_norm = batch_norm_expect_is_training
with arg_scope(resnet_utils.resnet_arg_scope()):
network_fn(
inputs,
num_classes,
is_training=True,
global_pool=global_pool,
scope='resnet2')
layers.batch_norm = batch_norm_expect_is_not_training
with arg_scope(resnet_utils.resnet_arg_scope()):
network_fn(
inputs,
num_classes,
is_training=False,
global_pool=global_pool,
scope='resnet3')
# resnet_arg_scope with is_training set to True (deprecated)
layers.batch_norm = batch_norm_expect_is_training
with arg_scope(resnet_utils.resnet_arg_scope(is_training=True)):
network_fn(inputs, num_classes, global_pool=global_pool, scope='resnet4')
layers.batch_norm = batch_norm_expect_is_training
with arg_scope(resnet_utils.resnet_arg_scope(is_training=True)):
network_fn(
inputs,
num_classes,
is_training=True,
global_pool=global_pool,
scope='resnet5')
layers.batch_norm = batch_norm_expect_is_not_training
with arg_scope(resnet_utils.resnet_arg_scope(is_training=True)):
network_fn(
inputs,
num_classes,
is_training=False,
global_pool=global_pool,
scope='resnet6')
# resnet_arg_scope with is_training set to False (deprecated)
layers.batch_norm = batch_norm_expect_is_not_training
with arg_scope(resnet_utils.resnet_arg_scope(is_training=False)):
network_fn(inputs, num_classes, global_pool=global_pool, scope='resnet7')
layers.batch_norm = batch_norm_expect_is_training
with arg_scope(resnet_utils.resnet_arg_scope(is_training=False)):
network_fn(
inputs,
num_classes,
is_training=True,
global_pool=global_pool,
scope='resnet8')
layers.batch_norm = batch_norm_expect_is_not_training
with arg_scope(resnet_utils.resnet_arg_scope(is_training=False)):
network_fn(
inputs,
num_classes,
is_training=False,
global_pool=global_pool,
scope='resnet9')
layers.batch_norm = batch_norm_fn
开发者ID:1000sprites,项目名称:tensorflow,代码行数:87,代码来源:resnet_is_training_test.py
注:本文中的tensorflow.contrib.slim.python.slim.nets.resnet_utils.resnet_arg_scope函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论