• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python resnet_utils.resnet_arg_scope函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.contrib.slim.python.slim.nets.resnet_utils.resnet_arg_scope函数的典型用法代码示例。如果您正苦于以下问题:Python resnet_arg_scope函数的具体用法?Python resnet_arg_scope怎么用?Python resnet_arg_scope使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了resnet_arg_scope函数的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: testAtrousFullyConvolutionalValues

 def testAtrousFullyConvolutionalValues(self):
   """Verify dense feature extraction with atrous convolution."""
   nominal_stride = 32
   for output_stride in [4, 8, 16, 32, None]:
     with arg_scope(resnet_utils.resnet_arg_scope()):
       with ops.Graph().as_default():
         with self.test_session() as sess:
           random_seed.set_random_seed(0)
           inputs = create_test_input(2, 81, 81, 3)
           # Dense feature extraction followed by subsampling.
           output, _ = self._resnet_small(
               inputs,
               None,
               is_training=False,
               global_pool=False,
               output_stride=output_stride)
           if output_stride is None:
             factor = 1
           else:
             factor = nominal_stride // output_stride
           output = resnet_utils.subsample(output, factor)
           # Make the two networks use the same weights.
           variable_scope.get_variable_scope().reuse_variables()
           # Feature extraction at the nominal network rate.
           expected, _ = self._resnet_small(
               inputs, None, is_training=False, global_pool=False)
           sess.run(variables.global_variables_initializer())
           self.assertAllClose(
               output.eval(), expected.eval(), atol=1e-4, rtol=1e-4)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:29,代码来源:resnet_v2_test.py


示例2: testEndPointsV2

 def testEndPointsV2(self):
   """Test the end points of a tiny v2 bottleneck network."""
   blocks = [
       resnet_v2.resnet_v2_block(
           'block1', base_depth=1, num_units=2, stride=2),
       resnet_v2.resnet_v2_block(
           'block2', base_depth=2, num_units=2, stride=1),
   ]
   inputs = create_test_input(2, 32, 16, 3)
   with arg_scope(resnet_utils.resnet_arg_scope()):
     _, end_points = self._resnet_plain(inputs, blocks, scope='tiny')
   expected = [
       'tiny/block1/unit_1/bottleneck_v2/shortcut',
       'tiny/block1/unit_1/bottleneck_v2/conv1',
       'tiny/block1/unit_1/bottleneck_v2/conv2',
       'tiny/block1/unit_1/bottleneck_v2/conv3',
       'tiny/block1/unit_2/bottleneck_v2/conv1',
       'tiny/block1/unit_2/bottleneck_v2/conv2',
       'tiny/block1/unit_2/bottleneck_v2/conv3',
       'tiny/block2/unit_1/bottleneck_v2/shortcut',
       'tiny/block2/unit_1/bottleneck_v2/conv1',
       'tiny/block2/unit_1/bottleneck_v2/conv2',
       'tiny/block2/unit_1/bottleneck_v2/conv3',
       'tiny/block2/unit_2/bottleneck_v2/conv1',
       'tiny/block2/unit_2/bottleneck_v2/conv2',
       'tiny/block2/unit_2/bottleneck_v2/conv3'
   ]
   self.assertItemsEqual(expected, end_points)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:28,代码来源:resnet_v2_test.py


示例3: testEndPointsV2

 def testEndPointsV2(self):
   """Test the end points of a tiny v2 bottleneck network."""
   bottleneck = resnet_v2.bottleneck
   blocks = [
       resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]),
       resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])
   ]
   inputs = create_test_input(2, 32, 16, 3)
   with arg_scope(resnet_utils.resnet_arg_scope()):
     _, end_points = self._resnet_plain(inputs, blocks, scope='tiny')
   expected = [
       'tiny/block1/unit_1/bottleneck_v2/shortcut',
       'tiny/block1/unit_1/bottleneck_v2/conv1',
       'tiny/block1/unit_1/bottleneck_v2/conv2',
       'tiny/block1/unit_1/bottleneck_v2/conv3',
       'tiny/block1/unit_2/bottleneck_v2/conv1',
       'tiny/block1/unit_2/bottleneck_v2/conv2',
       'tiny/block1/unit_2/bottleneck_v2/conv3',
       'tiny/block2/unit_1/bottleneck_v2/shortcut',
       'tiny/block2/unit_1/bottleneck_v2/conv1',
       'tiny/block2/unit_1/bottleneck_v2/conv2',
       'tiny/block2/unit_1/bottleneck_v2/conv3',
       'tiny/block2/unit_2/bottleneck_v2/conv1',
       'tiny/block2/unit_2/bottleneck_v2/conv2',
       'tiny/block2/unit_2/bottleneck_v2/conv3'
   ]
   self.assertItemsEqual(expected, end_points)
开发者ID:Immexxx,项目名称:tensorflow,代码行数:27,代码来源:resnet_v2_test.py


示例4: testClassificationEndPoints

 def testClassificationEndPoints(self):
   global_pool = True
   num_classes = 10
   inputs = create_test_input(2, 224, 224, 3)
   with arg_scope(resnet_utils.resnet_arg_scope()):
     logits, end_points = self._resnet_small(
         inputs, num_classes, global_pool=global_pool, scope='resnet')
   self.assertTrue(logits.op.name.startswith('resnet/logits'))
   self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes])
   self.assertTrue('predictions' in end_points)
   self.assertListEqual(end_points['predictions'].get_shape().as_list(),
                        [2, 1, 1, num_classes])
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:12,代码来源:resnet_v2_test.py


示例5: testFullyConvolutionalUnknownHeightWidth

 def testFullyConvolutionalUnknownHeightWidth(self):
   batch = 2
   height, width = 65, 65
   global_pool = False
   inputs = create_test_input(batch, None, None, 3)
   with arg_scope(resnet_utils.resnet_arg_scope()):
     output, _ = self._resnet_small(inputs, None, global_pool=global_pool)
   self.assertListEqual(output.get_shape().as_list(), [batch, None, None, 32])
   images = create_test_input(batch, height, width, 3)
   with self.test_session() as sess:
     sess.run(variables.global_variables_initializer())
     output = sess.run(output, {inputs: images.eval()})
     self.assertEqual(output.shape, (batch, 3, 3, 32))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:13,代码来源:resnet_v2_test.py


示例6: testFullyConvolutionalEndpointShapes

 def testFullyConvolutionalEndpointShapes(self):
   global_pool = False
   num_classes = 10
   inputs = create_test_input(2, 321, 321, 3)
   with arg_scope(resnet_utils.resnet_arg_scope()):
     _, end_points = self._resnet_small(
         inputs, num_classes, global_pool=global_pool, scope='resnet')
     endpoint_to_shape = {
         'resnet/block1': [2, 41, 41, 4],
         'resnet/block2': [2, 21, 21, 8],
         'resnet/block3': [2, 11, 11, 16],
         'resnet/block4': [2, 11, 11, 32]
     }
     for endpoint in endpoint_to_shape:
       shape = endpoint_to_shape[endpoint]
       self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:16,代码来源:resnet_v2_test.py


示例7: testClassificationShapes

 def testClassificationShapes(self):
   global_pool = True
   num_classes = 10
   inputs = create_test_input(2, 224, 224, 3)
   with arg_scope(resnet_utils.resnet_arg_scope()):
     _, end_points = self._resnet_small(
         inputs, num_classes, global_pool=global_pool, scope='resnet')
     endpoint_to_shape = {
         'resnet/block1': [2, 28, 28, 4],
         'resnet/block2': [2, 14, 14, 8],
         'resnet/block3': [2, 7, 7, 16],
         'resnet/block4': [2, 7, 7, 32]
     }
     for endpoint in endpoint_to_shape:
       shape = endpoint_to_shape[endpoint]
       self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:16,代码来源:resnet_v2_test.py


示例8: testUnknownBatchSize

 def testUnknownBatchSize(self):
   batch = 2
   height, width = 65, 65
   global_pool = True
   num_classes = 10
   inputs = create_test_input(None, height, width, 3)
   with arg_scope(resnet_utils.resnet_arg_scope()):
     logits, _ = self._resnet_small(
         inputs, num_classes, global_pool=global_pool, scope='resnet')
   self.assertTrue(logits.op.name.startswith('resnet/logits'))
   self.assertListEqual(logits.get_shape().as_list(),
                        [None, 1, 1, num_classes])
   images = create_test_input(batch, height, width, 3)
   with self.test_session() as sess:
     sess.run(variables.global_variables_initializer())
     output = sess.run(logits, {inputs: images.eval()})
     self.assertEqual(output.shape, (batch, 1, 1, num_classes))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:17,代码来源:resnet_v2_test.py


示例9: _atrousValues

  def _atrousValues(self, bottleneck):
    """Verify the values of dense feature extraction by atrous convolution.

    Make sure that dense feature extraction by stack_blocks_dense() followed by
    subsampling gives identical results to feature extraction at the nominal
    network output stride using the simple self._stack_blocks_nondense() above.

    Args:
      bottleneck: The bottleneck function.
    """
    blocks = [
        resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]),
        resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 2)]),
        resnet_utils.Block('block3', bottleneck, [(16, 4, 1), (16, 4, 2)]),
        resnet_utils.Block('block4', bottleneck, [(32, 8, 1), (32, 8, 1)])
    ]
    nominal_stride = 8

    # Test both odd and even input dimensions.
    height = 30
    width = 31
    with arg_scope(resnet_utils.resnet_arg_scope(is_training=False)):
      for output_stride in [1, 2, 4, 8, None]:
        with ops.Graph().as_default():
          with self.test_session() as sess:
            random_seed.set_random_seed(0)
            inputs = create_test_input(1, height, width, 3)
            # Dense feature extraction followed by subsampling.
            output = resnet_utils.stack_blocks_dense(inputs, blocks,
                                                     output_stride)
            if output_stride is None:
              factor = 1
            else:
              factor = nominal_stride // output_stride

            output = resnet_utils.subsample(output, factor)
            # Make the two networks use the same weights.
            variable_scope.get_variable_scope().reuse_variables()
            # Feature extraction at the nominal network rate.
            expected = self._stack_blocks_nondense(inputs, blocks)
            sess.run(variables.global_variables_initializer())
            output, expected = sess.run([output, expected])
            self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4)
开发者ID:Immexxx,项目名称:tensorflow,代码行数:43,代码来源:resnet_v2_test.py


示例10: testAtrousValuesBottleneck

  def testAtrousValuesBottleneck(self):
    """Verify the values of dense feature extraction by atrous convolution.

    Make sure that dense feature extraction by stack_blocks_dense() followed by
    subsampling gives identical results to feature extraction at the nominal
    network output stride using the simple self._stack_blocks_nondense() above.
    """
    block = resnet_v2.resnet_v2_block
    blocks = [
        block('block1', base_depth=1, num_units=2, stride=2),
        block('block2', base_depth=2, num_units=2, stride=2),
        block('block3', base_depth=4, num_units=2, stride=2),
        block('block4', base_depth=8, num_units=2, stride=1),
    ]
    nominal_stride = 8

    # Test both odd and even input dimensions.
    height = 30
    width = 31
    with arg_scope(resnet_utils.resnet_arg_scope()):
      with arg_scope([layers.batch_norm], is_training=False):
        for output_stride in [1, 2, 4, 8, None]:
          with ops.Graph().as_default():
            with self.test_session() as sess:
              random_seed.set_random_seed(0)
              inputs = create_test_input(1, height, width, 3)
              # Dense feature extraction followed by subsampling.
              output = resnet_utils.stack_blocks_dense(inputs, blocks,
                                                       output_stride)
              if output_stride is None:
                factor = 1
              else:
                factor = nominal_stride // output_stride

              output = resnet_utils.subsample(output, factor)
              # Make the two networks use the same weights.
              variable_scope.get_variable_scope().reuse_variables()
              # Feature extraction at the nominal network rate.
              expected = self._stack_blocks_nondense(inputs, blocks)
              sess.run(variables.global_variables_initializer())
              output, expected = sess.run([output, expected])
              self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:42,代码来源:resnet_v2_test.py


示例11: _testDeprecatingIsTraining

  def _testDeprecatingIsTraining(self, network_fn):
    batch_norm_fn = layers.batch_norm

    @add_arg_scope
    def batch_norm_expect_is_training(*args, **kwargs):
      assert kwargs['is_training']
      return batch_norm_fn(*args, **kwargs)

    @add_arg_scope
    def batch_norm_expect_is_not_training(*args, **kwargs):
      assert not kwargs['is_training']
      return batch_norm_fn(*args, **kwargs)

    global_pool = True
    num_classes = 10
    inputs = create_test_input(2, 224, 224, 3)

    # Default argument for resnet_arg_scope
    layers.batch_norm = batch_norm_expect_is_training
    with arg_scope(resnet_utils.resnet_arg_scope()):
      network_fn(inputs, num_classes, global_pool=global_pool, scope='resnet1')

    layers.batch_norm = batch_norm_expect_is_training
    with arg_scope(resnet_utils.resnet_arg_scope()):
      network_fn(
          inputs,
          num_classes,
          is_training=True,
          global_pool=global_pool,
          scope='resnet2')

    layers.batch_norm = batch_norm_expect_is_not_training
    with arg_scope(resnet_utils.resnet_arg_scope()):
      network_fn(
          inputs,
          num_classes,
          is_training=False,
          global_pool=global_pool,
          scope='resnet3')

    # resnet_arg_scope with is_training set to True (deprecated)
    layers.batch_norm = batch_norm_expect_is_training
    with arg_scope(resnet_utils.resnet_arg_scope(is_training=True)):
      network_fn(inputs, num_classes, global_pool=global_pool, scope='resnet4')

    layers.batch_norm = batch_norm_expect_is_training
    with arg_scope(resnet_utils.resnet_arg_scope(is_training=True)):
      network_fn(
          inputs,
          num_classes,
          is_training=True,
          global_pool=global_pool,
          scope='resnet5')

    layers.batch_norm = batch_norm_expect_is_not_training
    with arg_scope(resnet_utils.resnet_arg_scope(is_training=True)):
      network_fn(
          inputs,
          num_classes,
          is_training=False,
          global_pool=global_pool,
          scope='resnet6')

    # resnet_arg_scope with is_training set to False (deprecated)
    layers.batch_norm = batch_norm_expect_is_not_training
    with arg_scope(resnet_utils.resnet_arg_scope(is_training=False)):
      network_fn(inputs, num_classes, global_pool=global_pool, scope='resnet7')

    layers.batch_norm = batch_norm_expect_is_training
    with arg_scope(resnet_utils.resnet_arg_scope(is_training=False)):
      network_fn(
          inputs,
          num_classes,
          is_training=True,
          global_pool=global_pool,
          scope='resnet8')

    layers.batch_norm = batch_norm_expect_is_not_training
    with arg_scope(resnet_utils.resnet_arg_scope(is_training=False)):
      network_fn(
          inputs,
          num_classes,
          is_training=False,
          global_pool=global_pool,
          scope='resnet9')

    layers.batch_norm = batch_norm_fn
开发者ID:1000sprites,项目名称:tensorflow,代码行数:87,代码来源:resnet_is_training_test.py



注:本文中的tensorflow.contrib.slim.python.slim.nets.resnet_utils.resnet_arg_scope函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python resnet_utils.subsample函数代码示例发布时间:2022-05-27
下一篇:
Python learning.train函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap