本文整理汇总了Python中tensorflow.contrib.slim.python.slim.learning.train函数的典型用法代码示例。如果您正苦于以下问题:Python train函数的具体用法?Python train怎么用?Python train使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了train函数的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testTrainWithTrace
def testTrainWithTrace(self):
logdir = os.path.join(
tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs')
with ops.Graph().as_default():
random_seed.set_random_seed(0)
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
tf_predictions = LogisticClassifier(tf_inputs)
loss_ops.log_loss(tf_predictions, tf_labels)
total_loss = loss_ops.get_total_loss()
summary.scalar('total_loss', total_loss)
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = learning.create_train_op(total_loss, optimizer)
loss = learning.train(
train_op,
logdir,
number_of_steps=300,
log_every_n_steps=10,
trace_every_n_steps=100)
self.assertIsNotNone(loss)
for trace_step in [1, 101, 201]:
trace_filename = 'tf_trace-%d.json' % trace_step
self.assertTrue(os.path.isfile(os.path.join(logdir, trace_filename)))
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:27,代码来源:learning_test.py
示例2: testResumeTrainAchievesRoughlyTheSameLoss
def testResumeTrainAchievesRoughlyTheSameLoss(self):
logdir = os.path.join(
tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs')
number_of_steps = [300, 301, 305]
for i in range(len(number_of_steps)):
with ops.Graph().as_default():
random_seed.set_random_seed(i)
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
tf_predictions = LogisticClassifier(tf_inputs)
loss_ops.log_loss(tf_predictions, tf_labels)
total_loss = loss_ops.get_total_loss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = learning.create_train_op(total_loss, optimizer)
loss = learning.train(
train_op,
logdir,
number_of_steps=number_of_steps[i],
log_every_n_steps=10)
self.assertIsNotNone(loss)
self.assertLess(loss, .015)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:26,代码来源:learning_test.py
示例3: testTrainWithSessionWrapper
def testTrainWithSessionWrapper(self):
"""Test that slim.learning.train can take `session_wrapper` args.
One of the applications of `session_wrapper` is the wrappers of TensorFlow
Debugger (tfdbg), which intercept methods calls to `tf.Session` (e.g., run)
to achieve debugging. `DumpingDebugWrapperSession` is used here for testing
purpose.
"""
dump_root = tempfile.mkdtemp()
def dumping_wrapper(sess): # pylint: disable=invalid-name
return dumping_wrapper_lib.DumpingDebugWrapperSession(sess, dump_root)
with ops.Graph().as_default():
random_seed.set_random_seed(0)
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
tf_predictions = LogisticClassifier(tf_inputs)
loss_ops.log_loss(tf_predictions, tf_labels)
total_loss = loss_ops.get_total_loss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = learning.create_train_op(total_loss, optimizer)
loss = learning.train(
train_op, None, number_of_steps=1, session_wrapper=dumping_wrapper)
self.assertIsNotNone(loss)
run_root = glob.glob(os.path.join(dump_root, 'run_*'))[-1]
dump = debug_data.DebugDumpDir(run_root)
self.assertAllEqual(0,
dump.get_tensors('global_step', 0, 'DebugIdentity')[0])
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:34,代码来源:learning_test.py
示例4: testTrainWithInitFromCheckpoint
def testTrainWithInitFromCheckpoint(self):
logdir1 = os.path.join(
tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs1')
logdir2 = os.path.join(
tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs2')
# First, train the model one step (make sure the error is high).
with ops.Graph().as_default():
random_seed.set_random_seed(0)
train_op = self.create_train_op()
loss = learning.train(train_op, logdir1, number_of_steps=1)
self.assertGreater(loss, .5)
# Next, train the model to convergence.
with ops.Graph().as_default():
random_seed.set_random_seed(1)
train_op = self.create_train_op()
loss = learning.train(
train_op, logdir1, number_of_steps=300, log_every_n_steps=10)
self.assertIsNotNone(loss)
self.assertLess(loss, .02)
# Finally, advance the model a single step and validate that the loss is
# still low.
with ops.Graph().as_default():
random_seed.set_random_seed(2)
train_op = self.create_train_op()
model_variables = variables_lib.global_variables()
model_path = os.path.join(logdir1, 'model.ckpt-300')
init_op = variables_lib.global_variables_initializer()
op, init_feed_dict = variables_lib2.assign_from_checkpoint(
model_path, model_variables)
def InitAssignFn(sess):
sess.run(op, init_feed_dict)
loss = learning.train(
train_op,
logdir2,
number_of_steps=1,
init_op=init_op,
init_fn=InitAssignFn)
self.assertIsNotNone(loss)
self.assertLess(loss, .02)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:47,代码来源:learning_test.py
示例5: testTrainAllVarsHasLowerLossThanTrainSubsetOfVars
def testTrainAllVarsHasLowerLossThanTrainSubsetOfVars(self):
logdir1 = os.path.join(
tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs1')
# First, train only the weights of the model.
with ops.Graph().as_default():
random_seed.set_random_seed(0)
total_loss = self.ModelLoss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
weights = variables_lib2.get_variables_by_name('weights')
train_op = learning.create_train_op(
total_loss, optimizer, variables_to_train=weights)
loss = learning.train(
train_op, logdir1, number_of_steps=200, log_every_n_steps=10)
self.assertGreater(loss, .015)
self.assertLess(loss, .05)
# Next, train the biases of the model.
with ops.Graph().as_default():
random_seed.set_random_seed(1)
total_loss = self.ModelLoss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
biases = variables_lib2.get_variables_by_name('biases')
train_op = learning.create_train_op(
total_loss, optimizer, variables_to_train=biases)
loss = learning.train(
train_op, logdir1, number_of_steps=300, log_every_n_steps=10)
self.assertGreater(loss, .015)
self.assertLess(loss, .05)
# Finally, train both weights and bias to get lower loss.
with ops.Graph().as_default():
random_seed.set_random_seed(2)
total_loss = self.ModelLoss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = learning.create_train_op(total_loss, optimizer)
loss = learning.train(
train_op, logdir1, number_of_steps=400, log_every_n_steps=10)
self.assertIsNotNone(loss)
self.assertLess(loss, .015)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:46,代码来源:learning_test.py
示例6: testTrainWithNoneAsLogdirWhenUsingTraceRaisesError
def testTrainWithNoneAsLogdirWhenUsingTraceRaisesError(self):
with ops.Graph().as_default():
random_seed.set_random_seed(0)
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
tf_predictions = LogisticClassifier(tf_inputs)
loss_ops.log_loss(tf_predictions, tf_labels)
total_loss = loss_ops.get_total_loss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = learning.create_train_op(total_loss, optimizer)
with self.assertRaises(ValueError):
learning.train(
train_op, None, number_of_steps=300, trace_every_n_steps=10)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:17,代码来源:learning_test.py
示例7: testTrainWithNoneAsInitWhenUsingVarsRaisesError
def testTrainWithNoneAsInitWhenUsingVarsRaisesError(self):
logdir = os.path.join(
tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs')
with ops.Graph().as_default():
random_seed.set_random_seed(0)
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
tf_predictions = LogisticClassifier(tf_inputs)
loss_ops.log_loss(tf_predictions, tf_labels)
total_loss = loss_ops.get_total_loss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = learning.create_train_op(total_loss, optimizer)
with self.assertRaises(RuntimeError):
learning.train(train_op, logdir, init_op=None, number_of_steps=300)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:18,代码来源:learning_test.py
示例8: testTrainWithAlteredGradients
def testTrainWithAlteredGradients(self):
# Use the same learning rate but different gradient multipliers
# to train two models. Model with equivalently larger learning
# rate (i.e., learning_rate * gradient_multiplier) has smaller
# training loss.
logdir1 = os.path.join(
tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs1')
logdir2 = os.path.join(
tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs2')
multipliers = [1., 1000.]
number_of_steps = 10
losses = []
learning_rate = 0.001
# First, train the model with equivalently smaller learning rate.
with ops.Graph().as_default():
random_seed.set_random_seed(0)
train_op = self.create_train_op(
learning_rate=learning_rate, gradient_multiplier=multipliers[0])
loss = learning.train(train_op, logdir1, number_of_steps=number_of_steps)
losses.append(loss)
self.assertGreater(loss, .5)
# Second, train the model with equivalently larger learning rate.
with ops.Graph().as_default():
random_seed.set_random_seed(0)
train_op = self.create_train_op(
learning_rate=learning_rate, gradient_multiplier=multipliers[1])
loss = learning.train(train_op, logdir2, number_of_steps=number_of_steps)
losses.append(loss)
self.assertIsNotNone(loss)
self.assertLess(loss, .5)
# The loss of the model trained with larger learning rate should
# be smaller.
self.assertGreater(losses[0], losses[1])
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:37,代码来源:learning_test.py
示例9: test_supervisor_run_gan_model_train_ops_multiple_steps
def test_supervisor_run_gan_model_train_ops_multiple_steps(self):
step = training_util.create_global_step()
train_ops = namedtuples.GANTrainOps(
generator_train_op=constant_op.constant(3.0),
discriminator_train_op=constant_op.constant(2.0),
global_step_inc_op=step.assign_add(1))
train_steps = namedtuples.GANTrainSteps(
generator_train_steps=3, discriminator_train_steps=4)
final_loss = slim_learning.train(
train_op=train_ops,
logdir='',
global_step=step,
number_of_steps=1,
train_step_fn=train.get_sequential_train_steps(train_steps))
self.assertTrue(np.isscalar(final_loss))
self.assertEqual(17.0, final_loss)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:17,代码来源:train_test.py
示例10: testTrainWithNoInitAssignCanAchieveZeroLoss
def testTrainWithNoInitAssignCanAchieveZeroLoss(self):
logdir = os.path.join(
tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs')
with ops.Graph().as_default():
random_seed.set_random_seed(0)
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
tf_predictions = LogisticClassifier(tf_inputs)
loss_ops.log_loss(tf_predictions, tf_labels)
total_loss = loss_ops.get_total_loss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = learning.create_train_op(total_loss, optimizer)
loss = learning.train(
train_op, logdir, number_of_steps=300, log_every_n_steps=10)
self.assertIsNotNone(loss)
self.assertLess(loss, .015)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:20,代码来源:learning_test.py
示例11: testTrainWithSessionConfig
def testTrainWithSessionConfig(self):
with ops.Graph().as_default():
random_seed.set_random_seed(0)
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
tf_predictions = LogisticClassifier(tf_inputs)
loss_ops.log_loss(tf_predictions, tf_labels)
total_loss = loss_ops.get_total_loss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = learning.create_train_op(total_loss, optimizer)
session_config = config_pb2.ConfigProto(allow_soft_placement=True)
loss = learning.train(
train_op,
None,
number_of_steps=300,
log_every_n_steps=10,
session_config=session_config)
self.assertIsNotNone(loss)
self.assertLess(loss, .015)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:23,代码来源:learning_test.py
示例12: testTrainWithEpochLimit
def testTrainWithEpochLimit(self):
logdir = os.path.join(tempfile.mkdtemp(prefix=self.get_temp_dir()),
'tmp_logs')
with ops.Graph().as_default():
random_seed.set_random_seed(0)
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
tf_inputs_limited = input_lib.limit_epochs(tf_inputs, num_epochs=300)
tf_labels_limited = input_lib.limit_epochs(tf_labels, num_epochs=300)
tf_predictions = LogisticClassifier(tf_inputs_limited)
loss_ops.log_loss(tf_predictions, tf_labels_limited)
total_loss = loss_ops.get_total_loss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = learning.create_train_op(total_loss, optimizer)
loss = learning.train(train_op, logdir, log_every_n_steps=10)
self.assertIsNotNone(loss)
self.assertLess(loss, .015)
self.assertTrue(os.path.isfile('{}/model.ckpt-300.index'.format(logdir)))
self.assertTrue(os.path.isfile('{}/model.ckpt-300.data-00000-of-00001'.format(logdir)))
开发者ID:Immexxx,项目名称:tensorflow,代码行数:23,代码来源:learning_test.py
注:本文中的tensorflow.contrib.slim.python.slim.learning.train函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论