• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python feature_column.sparse_column_with_keys函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.contrib.layers.python.layers.feature_column.sparse_column_with_keys函数的典型用法代码示例。如果您正苦于以下问题:Python sparse_column_with_keys函数的具体用法?Python sparse_column_with_keys怎么用?Python sparse_column_with_keys使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了sparse_column_with_keys函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: testSharedEmbeddingColumn

  def testSharedEmbeddingColumn(self):
    a1 = fc.sparse_column_with_keys("a1", ["marlo", "omar", "stringer"])
    a2 = fc.sparse_column_with_keys("a2", ["marlo", "omar", "stringer"])
    b = fc.shared_embedding_columns([a1, a2], dimension=4, combiner="mean")
    self.assertEqual(len(b), 2)
    self.assertEqual(b[0].shared_embedding_name, "a1_a2_shared_embedding")
    self.assertEqual(b[1].shared_embedding_name, "a1_a2_shared_embedding")

    # Create a sparse id tensor for a1.
    input_tensor_c1 = sparse_tensor_lib.SparseTensor(
        indices=[[0, 0], [1, 1], [2, 2]], values=[0, 1, 2], dense_shape=[3, 3])
    # Create a sparse id tensor for a2.
    input_tensor_c2 = sparse_tensor_lib.SparseTensor(
        indices=[[0, 0], [1, 1], [2, 2]], values=[0, 1, 2], dense_shape=[3, 3])
    with variable_scope.variable_scope("run_1"):
      b1 = feature_column_ops.input_from_feature_columns({
          b[0]: input_tensor_c1
      }, [b[0]])
      b2 = feature_column_ops.input_from_feature_columns({
          b[1]: input_tensor_c2
      }, [b[1]])
    with self.test_session() as sess:
      sess.run(variables.global_variables_initializer())
      b1_value = b1.eval()
      b2_value = b2.eval()
    for i in range(len(b1_value)):
      self.assertAllClose(b1_value[i], b2_value[i])

    # Test the case when a shared_embedding_name is explictly specified.
    d = fc.shared_embedding_columns(
        [a1, a2],
        dimension=4,
        combiner="mean",
        shared_embedding_name="my_shared_embedding")
    # a3 is a completely different sparse column with a1 and a2, but since the
    # same shared_embedding_name is passed in, a3 will have the same embedding
    # as a1 and a2
    a3 = fc.sparse_column_with_keys("a3", ["cathy", "tom", "anderson"])
    e = fc.shared_embedding_columns(
        [a3],
        dimension=4,
        combiner="mean",
        shared_embedding_name="my_shared_embedding")
    with variable_scope.variable_scope("run_2"):
      d1 = feature_column_ops.input_from_feature_columns({
          d[0]: input_tensor_c1
      }, [d[0]])
      e1 = feature_column_ops.input_from_feature_columns({
          e[0]: input_tensor_c1
      }, [e[0]])
    with self.test_session() as sess:
      sess.run(variables.global_variables_initializer())
      d1_value = d1.eval()
      e1_value = e1.eval()
    for i in range(len(d1_value)):
      self.assertAllClose(d1_value[i], e1_value[i])
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:56,代码来源:feature_column_test.py


示例2: testSharedEmbeddingColumnDeepCopy

 def testSharedEmbeddingColumnDeepCopy(self):
   a1 = fc.sparse_column_with_keys("a1", ["marlo", "omar", "stringer"])
   a2 = fc.sparse_column_with_keys("a2", ["marlo", "omar", "stringer"])
   columns = fc.shared_embedding_columns(
       [a1, a2], dimension=4, combiner="mean")
   columns_copy = copy.deepcopy(columns)
   self.assertEqual(
       columns_copy[0].shared_embedding_name, "a1_a2_shared_embedding")
   self.assertEqual(
       columns_copy[1].shared_embedding_name, "a1_a2_shared_embedding")
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:10,代码来源:feature_column_test.py


示例3: testSharedEmbeddingColumnErrors

  def testSharedEmbeddingColumnErrors(self):
    # Tries passing in a string.
    with self.assertRaises(TypeError):
      invalid_string = "Invalid string."
      fc.shared_embedding_columns(invalid_string, dimension=2, combiner="mean")

    # Tries passing in a set of sparse columns.
    with self.assertRaises(TypeError):
      invalid_set = set([
          fc.sparse_column_with_keys("a", ["foo", "bar"]),
          fc.sparse_column_with_keys("b", ["foo", "bar"]),
      ])
      fc.shared_embedding_columns(invalid_set, dimension=2, combiner="mean")
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:13,代码来源:feature_column_test.py


示例4: testFloat32WeightedSparseStringColumnDtypes

 def testFloat32WeightedSparseStringColumnDtypes(self):
   ids = fc.sparse_column_with_keys("ids", ["marlo", "omar", "stringer"])
   weighted_ids = fc.weighted_sparse_column(ids, "weights")
   self.assertDictEqual({
       "ids": parsing_ops.VarLenFeature(dtypes.string),
       "weights": parsing_ops.VarLenFeature(dtypes.float32)
   }, weighted_ids.config)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:7,代码来源:feature_column_test.py


示例5: testFloat32WeightedSparseInt32ColumnDtypes

 def testFloat32WeightedSparseInt32ColumnDtypes(self):
   ids = fc.sparse_column_with_keys("ids", [42, 1, -1000], dtype=dtypes.int32)
   weighted_ids = fc.weighted_sparse_column(ids, "weights")
   self.assertDictEqual({
       "ids": parsing_ops.VarLenFeature(dtypes.int32),
       "weights": parsing_ops.VarLenFeature(dtypes.float32)
   }, weighted_ids.config)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:7,代码来源:feature_column_test.py


示例6: testOneHotColumnDeepCopy

 def testOneHotColumnDeepCopy(self):
   a = fc.sparse_column_with_keys("a", ["a", "b", "c", "d"])
   column = fc.one_hot_column(a)
   column_copy = copy.deepcopy(column)
   self.assertEqual(column_copy.sparse_id_column.name, "a")
   self.assertEqual(column.name, "a_one_hot")
   self.assertEqual(column.length, 4)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:7,代码来源:feature_column_test.py


示例7: testWeightedSparseColumnDeepCopy

 def testWeightedSparseColumnDeepCopy(self):
   ids = fc.sparse_column_with_keys("ids", ["marlo", "omar", "stringer"])
   weighted = fc.weighted_sparse_column(ids, "weights")
   weighted_copy = copy.deepcopy(weighted)
   self.assertEqual(weighted_copy.sparse_id_column.name, "ids")
   self.assertEqual(weighted_copy.weight_column_name, "weights")
   self.assertEqual(weighted_copy.name, "ids_weighted_by_weights")
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:7,代码来源:feature_column_test.py


示例8: test_exogenous_input

 def test_exogenous_input(self):
   """Test that no errors are raised when using exogenous features."""
   dtype = dtypes.float64
   times = [1, 2, 3, 4, 5, 6]
   values = [[0.01], [5.10], [5.21], [0.30], [5.41], [0.50]]
   feature_a = [["off"], ["on"], ["on"], ["off"], ["on"], ["off"]]
   sparse_column_a = feature_column.sparse_column_with_keys(
       column_name="feature_a", keys=["on", "off"])
   one_hot_a = layers.one_hot_column(sparse_id_column=sparse_column_a)
   regressor = estimators.StructuralEnsembleRegressor(
       periodicities=[],
       num_features=1,
       moving_average_order=0,
       exogenous_feature_columns=[one_hot_a],
       dtype=dtype)
   features = {TrainEvalFeatures.TIMES: times,
               TrainEvalFeatures.VALUES: values,
               "feature_a": feature_a}
   train_input_fn = input_pipeline.RandomWindowInputFn(
       input_pipeline.NumpyReader(features),
       window_size=6, batch_size=1)
   regressor.train(input_fn=train_input_fn, steps=1)
   eval_input_fn = input_pipeline.WholeDatasetInputFn(
       input_pipeline.NumpyReader(features))
   evaluation = regressor.evaluate(input_fn=eval_input_fn, steps=1)
   predict_input_fn = input_pipeline.predict_continuation_input_fn(
       evaluation, times=[[7, 8, 9]],
       exogenous_features={"feature_a": [[["on"], ["off"], ["on"]]]})
   regressor.predict(input_fn=predict_input_fn)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:29,代码来源:structural_ensemble_test.py


示例9: setUp

  def setUp(self):
    super(DynamicRnnEstimatorTest, self).setUp()
    self.rnn_cell = core_rnn_cell_impl.BasicRNNCell(self.NUM_RNN_CELL_UNITS)
    self.mock_target_column = MockTargetColumn(
        num_label_columns=self.NUM_LABEL_COLUMNS)

    location = feature_column.sparse_column_with_keys(
        'location', keys=['west_side', 'east_side', 'nyc'])
    location_onehot = feature_column.one_hot_column(location)
    self.context_feature_columns = [location_onehot]

    wire_cast = feature_column.sparse_column_with_keys(
        'wire_cast', ['marlo', 'omar', 'stringer'])
    wire_cast_embedded = feature_column.embedding_column(wire_cast, dimension=8)
    measurements = feature_column.real_valued_column(
        'measurements', dimension=2)
    self.sequence_feature_columns = [measurements, wire_cast_embedded]
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:17,代码来源:dynamic_rnn_estimator_test.py


示例10: testMissingValueInOneHotColumnForSparseColumnWithKeys

 def testMissingValueInOneHotColumnForSparseColumnWithKeys(self):
   ids = fc.sparse_column_with_keys("ids", ["marlo", "omar", "stringer"])
   one_hot = fc.one_hot_column(ids)
   features = {"ids": constant_op.constant([["marlo", "unknown", "omar"]])}
   one_hot_tensor = feature_column_ops.input_from_feature_columns(
       features, [one_hot])
   with self.test_session() as sess:
     sess.run(variables.global_variables_initializer())
     sess.run(lookup_ops.tables_initializer())
     self.assertAllEqual([[1., 1., 0.]], one_hot_tensor.eval())
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:10,代码来源:feature_column_test.py


示例11: testOneHotColumn

  def testOneHotColumn(self):
    a = fc.sparse_column_with_keys("a", ["a", "b", "c", "d"])
    onehot_a = fc.one_hot_column(a)
    self.assertEqual(onehot_a.sparse_id_column.name, "a")
    self.assertEqual(onehot_a.length, 4)

    b = fc.sparse_column_with_hash_bucket(
        "b", hash_bucket_size=100, combiner="sum")
    onehot_b = fc.one_hot_column(b)
    self.assertEqual(onehot_b.sparse_id_column.name, "b")
    self.assertEqual(onehot_b.length, 100)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:11,代码来源:feature_column_test.py


示例12: testSharedEmbeddingColumnDeterminism

 def testSharedEmbeddingColumnDeterminism(self):
   # Tests determinism in auto-generated shared_embedding_name.
   sparse_id_columns = tuple([
       fc.sparse_column_with_keys(k, ["foo", "bar"])
       for k in ["07", "02", "00", "03", "05", "01", "09", "06", "04", "08"]
   ])
   output = fc.shared_embedding_columns(
       sparse_id_columns, dimension=2, combiner="mean")
   self.assertEqual(len(output), 10)
   for x in output:
     self.assertEqual(x.shared_embedding_name,
                      "00_01_02_plus_7_others_shared_embedding")
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:12,代码来源:feature_column_test.py


示例13: testInt32WeightedSparseInt64ColumnDtypes

  def testInt32WeightedSparseInt64ColumnDtypes(self):
    ids = fc.sparse_column_with_keys("ids", [42, 1, -1000], dtype=dtypes.int64)
    weighted_ids = fc.weighted_sparse_column(ids, "weights", dtype=dtypes.int32)
    self.assertDictEqual({
        "ids": parsing_ops.VarLenFeature(dtypes.int64),
        "weights": parsing_ops.VarLenFeature(dtypes.int32)
    }, weighted_ids.config)

    with self.assertRaisesRegexp(ValueError,
                                 "dtype is not convertible to float"):
      weighted_ids = fc.weighted_sparse_column(
          ids, "weights", dtype=dtypes.string)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:12,代码来源:feature_column_test.py


示例14: testSparseColumnKeysDeepCopy

 def testSparseColumnKeysDeepCopy(self):
   """Tests deepcopy of sparse_column_with_keys."""
   column = fc.sparse_column_with_keys("a", keys=["key0", "key1", "key2"])
   self.assertEqual("a", column.name)
   column_copy = copy.deepcopy(column)
   self.assertEqual("a", column_copy.name)
   self.assertEqual(
       fc._SparseIdLookupConfig(  # pylint: disable=protected-access
           keys=("key0", "key1", "key2"),
           vocab_size=3,
           default_value=-1),
       column_copy.lookup_config)
   self.assertFalse(column_copy.is_integerized)
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:13,代码来源:feature_column_test.py


示例15: testSharedEmbeddingColumnWithWeightedSparseColumn

  def testSharedEmbeddingColumnWithWeightedSparseColumn(self):
    # Tests creation of shared embeddings containing weighted sparse columns.
    sparse_col = fc.sparse_column_with_keys("a1", ["marlo", "omar", "stringer"])
    ids = fc.sparse_column_with_keys("ids", ["marlo", "omar", "stringer"])
    weighted_sparse_col = fc.weighted_sparse_column(ids, "weights")
    self.assertEqual(weighted_sparse_col.name, "ids_weighted_by_weights")

    b = fc.shared_embedding_columns([sparse_col, weighted_sparse_col],
                                    dimension=4, combiner="mean")
    self.assertEqual(len(b), 2)
    self.assertEqual(b[0].shared_embedding_name,
                     "a1_ids_weighted_by_weights_shared_embedding")
    self.assertEqual(b[1].shared_embedding_name,
                     "a1_ids_weighted_by_weights_shared_embedding")

    # Tries reversing order to check compatibility condition.
    b = fc.shared_embedding_columns([weighted_sparse_col, sparse_col],
                                    dimension=4, combiner="mean")
    self.assertEqual(len(b), 2)
    self.assertEqual(b[0].shared_embedding_name,
                     "a1_ids_weighted_by_weights_shared_embedding")
    self.assertEqual(b[1].shared_embedding_name,
                     "a1_ids_weighted_by_weights_shared_embedding")

    # Tries adding two weighted columns to check compatibility between them.
    weighted_sparse_col_2 = fc.weighted_sparse_column(ids, "weights_2")
    b = fc.shared_embedding_columns([weighted_sparse_col,
                                     weighted_sparse_col_2],
                                    dimension=4, combiner="mean")
    self.assertEqual(len(b), 2)
    self.assertEqual(
        b[0].shared_embedding_name,
        "ids_weighted_by_weights_ids_weighted_by_weights_2_shared_embedding"
    )
    self.assertEqual(
        b[1].shared_embedding_name,
        "ids_weighted_by_weights_ids_weighted_by_weights_2_shared_embedding"
    )
开发者ID:Dr4KK,项目名称:tensorflow,代码行数:38,代码来源:feature_column_test.py


示例16: testCreateSequenceFeatureSpec

  def testCreateSequenceFeatureSpec(self):
    sparse_col = fc.sparse_column_with_hash_bucket(
        "sparse_column", hash_bucket_size=100)
    embedding_col = fc.embedding_column(
        fc.sparse_column_with_hash_bucket(
            "sparse_column_for_embedding", hash_bucket_size=10),
        dimension=4)
    sparse_id_col = fc.sparse_column_with_keys("id_column",
                                               ["marlo", "omar", "stringer"])
    weighted_id_col = fc.weighted_sparse_column(sparse_id_col,
                                                "id_weights_column")
    real_valued_col1 = fc.real_valued_column("real_valued_column", dimension=2)
    real_valued_col2 = fc.real_valued_column(
        "real_valued_default_column", dimension=5, default_value=3.0)
    real_valued_col3 = fc._real_valued_var_len_column(
        "real_valued_var_len_column", default_value=3.0, is_sparse=True)
    real_valued_col4 = fc._real_valued_var_len_column(
        "real_valued_var_len_dense_column", default_value=4.0, is_sparse=False)

    feature_columns = set([
        sparse_col, embedding_col, weighted_id_col, real_valued_col1,
        real_valued_col2, real_valued_col3, real_valued_col4
    ])

    feature_spec = fc._create_sequence_feature_spec_for_parsing(feature_columns)

    expected_feature_spec = {
        "sparse_column":
            parsing_ops.VarLenFeature(dtypes.string),
        "sparse_column_for_embedding":
            parsing_ops.VarLenFeature(dtypes.string),
        "id_column":
            parsing_ops.VarLenFeature(dtypes.string),
        "id_weights_column":
            parsing_ops.VarLenFeature(dtypes.float32),
        "real_valued_column":
            parsing_ops.FixedLenSequenceFeature(
                shape=[2], dtype=dtypes.float32, allow_missing=False),
        "real_valued_default_column":
            parsing_ops.FixedLenSequenceFeature(
                shape=[5], dtype=dtypes.float32, allow_missing=True),
        "real_valued_var_len_column":
            parsing_ops.VarLenFeature(dtype=dtypes.float32),
        "real_valued_var_len_dense_column":
            parsing_ops.FixedLenSequenceFeature(
                shape=[], dtype=dtypes.float32, allow_missing=True,
                default_value=4.0),
    }

    self.assertDictEqual(expected_feature_spec, feature_spec)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:50,代码来源:feature_column_test.py


示例17: testMissingValueInOneHotColumnForWeightedSparseColumn

 def testMissingValueInOneHotColumnForWeightedSparseColumn(self):
   # Github issue 12583
   ids = fc.sparse_column_with_keys("ids", ["marlo", "omar", "stringer"])
   weighted_ids = fc.weighted_sparse_column(ids, "weights")
   one_hot = fc.one_hot_column(weighted_ids)
   features = {
       'ids': constant_op.constant([['marlo', 'unknown', 'omar']]),
       'weights': constant_op.constant([[2., 4., 6.]])
   }
   one_hot_tensor = feature_column_ops.input_from_feature_columns(
     features, [one_hot])
   with self.test_session() as sess:
     sess.run(variables.global_variables_initializer())
     sess.run(lookup_ops.tables_initializer())
     self.assertAllEqual([[2., 6., 0.]], one_hot_tensor.eval())
开发者ID:1000sprites,项目名称:tensorflow,代码行数:15,代码来源:feature_column_test.py


示例18: testPrepareInputsForRnnSparseAndDense

  def testPrepareInputsForRnnSparseAndDense(self):
    num_unroll = 2
    embedding_dimension = 8
    dense_dimension = 2

    expected = [
        np.array([[1., 1., 1., 1., 1., 1., 1., 1., 111., 112.],
                  [1., 1., 1., 1., 1., 1., 1., 1., 211., 212.],
                  [1., 1., 1., 1., 1., 1., 1., 1., 311., 312.]]),
        np.array([[1., 1., 1., 1., 1., 1., 1., 1., 121., 122.],
                  [2., 2., 2., 2., 2., 2., 2., 2., 221., 222.],
                  [1., 1., 1., 1., 1., 1., 1., 1., 321., 322.]])
    ]

    sequence_features = {
        'wire_cast':
            sparse_tensor.SparseTensor(
                indices=[[0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 1, 0], [1, 1, 1],
                         [2, 0, 0], [2, 1, 1]],
                values=[
                    b'marlo', b'stringer', b'omar', b'stringer', b'marlo',
                    b'marlo', b'omar'
                ],
                dense_shape=[3, 2, 2]),
        'seq_feature0':
            constant_op.constant([[[111., 112.], [121., 122.]],
                                  [[211., 212.], [221., 222.]],
                                  [[311., 312.], [321., 322.]]])
    }

    wire_cast = feature_column.sparse_column_with_keys(
        'wire_cast', ['marlo', 'omar', 'stringer'])
    wire_cast_embedded = feature_column.embedding_column(
        wire_cast,
        dimension=embedding_dimension,
        combiner='sum',
        initializer=init_ops.ones_initializer())
    seq_feature0_column = feature_column.real_valued_column(
        'seq_feature0', dimension=dense_dimension)

    sequence_feature_columns = [seq_feature0_column, wire_cast_embedded]

    context_features = None

    self._test_prepare_inputs_for_rnn(sequence_features, context_features,
                                      sequence_feature_columns, num_unroll,
                                      expected)
开发者ID:finardi,项目名称:tensorflow,代码行数:47,代码来源:state_saving_rnn_estimator_test.py


示例19: testWeightedSparseColumnDtypes

  def testWeightedSparseColumnDtypes(self):
    ids = fc.sparse_column_with_keys("ids", ["marlo", "omar", "stringer"])
    weighted_ids = fc.weighted_sparse_column(ids, "weights")
    self.assertDictEqual({
        "ids": parsing_ops.VarLenFeature(dtypes.string),
        "weights": parsing_ops.VarLenFeature(dtypes.float32)
    }, weighted_ids.config)

    weighted_ids = fc.weighted_sparse_column(ids, "weights", dtype=dtypes.int32)
    self.assertDictEqual({
        "ids": parsing_ops.VarLenFeature(dtypes.string),
        "weights": parsing_ops.VarLenFeature(dtypes.int32)
    }, weighted_ids.config)

    with self.assertRaisesRegexp(ValueError,
                                 "dtype is not convertible to float"):
      weighted_ids = fc.weighted_sparse_column(
          ids, "weights", dtype=dtypes.string)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:18,代码来源:feature_column_test.py


示例20: testOneHotReshaping

  def testOneHotReshaping(self):
    """Tests reshaping behavior of `OneHotColumn`."""
    id_tensor_shape = [3, 2, 4, 5]

    sparse_column = fc.sparse_column_with_keys(
        "animals", ["squirrel", "moose", "dragon", "octopus"])
    one_hot = fc.one_hot_column(sparse_column)

    vocab_size = len(sparse_column.lookup_config.keys)
    id_tensor = _sparse_id_tensor(id_tensor_shape, vocab_size)

    for output_rank in range(1, len(id_tensor_shape) + 1):
      with variable_scope.variable_scope("output_rank_{}".format(output_rank)):
        one_hot_output = one_hot._to_dnn_input_layer(
            id_tensor, output_rank=output_rank)
      with self.test_session() as sess:
        one_hot_value = sess.run(one_hot_output)
        expected_shape = (id_tensor_shape[:output_rank - 1] + [vocab_size])
        self.assertEquals(expected_shape, list(one_hot_value.shape))
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:19,代码来源:feature_column_test.py



注:本文中的tensorflow.contrib.layers.python.layers.feature_column.sparse_column_with_keys函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap