本文整理汇总了Python中tensorflow.contrib.layers.python.layers.feature_column.sparse_column_with_hash_bucket函数的典型用法代码示例。如果您正苦于以下问题:Python sparse_column_with_hash_bucket函数的具体用法?Python sparse_column_with_hash_bucket怎么用?Python sparse_column_with_hash_bucket使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了sparse_column_with_hash_bucket函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testCrossedFeatures
def testCrossedFeatures(self):
"""Tests SDCALogisticClassifier with crossed features."""
def input_fn():
return {
'example_id':
constant_op.constant(['1', '2', '3']),
'language':
sparse_tensor.SparseTensor(
values=['english', 'italian', 'spanish'],
indices=[[0, 0], [1, 0], [2, 0]],
dense_shape=[3, 1]),
'country':
sparse_tensor.SparseTensor(
values=['US', 'IT', 'MX'],
indices=[[0, 0], [1, 0], [2, 0]],
dense_shape=[3, 1])
}, constant_op.constant([[0], [0], [1]])
language = feature_column_lib.sparse_column_with_hash_bucket(
'language', hash_bucket_size=5)
country = feature_column_lib.sparse_column_with_hash_bucket(
'country', hash_bucket_size=5)
country_language = feature_column_lib.crossed_column(
[language, country], hash_bucket_size=10)
classifier = sdca_estimator.SDCALogisticClassifier(
example_id_column='example_id', feature_columns=[country_language])
classifier.fit(input_fn=input_fn, steps=10)
metrics = classifier.evaluate(input_fn=input_fn, steps=1)
self.assertGreater(metrics['accuracy'], 0.9)
开发者ID:LUTAN,项目名称:tensorflow,代码行数:30,代码来源:sdca_estimator_test.py
示例2: testSparseFeaturesWithDuplicates
def testSparseFeaturesWithDuplicates(self):
"""Tests SDCALogisticClassifier with duplicated sparse features."""
def input_fn():
return {
'example_id':
constant_op.constant(['1', '2']),
'age':
sparse_tensor.SparseTensor(
values=['20-29'] * 5 + ['31-40'] * 5,
indices=[[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [1, 0],
[1, 0], [1, 0], [1, 0], [1, 0]],
dense_shape=[2, 1]),
'gender':
sparse_tensor.SparseTensor(
values=['m'] * 5 + ['f'] * 5,
indices=[[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [1, 0],
[1, 0], [1, 0], [1, 0], [1, 0]],
dense_shape=[2, 1]),
}, constant_op.constant([[1], [0]])
with self._single_threaded_test_session():
age = feature_column_lib.sparse_column_with_hash_bucket(
'age', hash_bucket_size=10)
gender = feature_column_lib.sparse_column_with_hash_bucket(
'gender', hash_bucket_size=10)
classifier = sdca_estimator.SDCALogisticClassifier(
example_id_column='example_id', feature_columns=[age, gender])
classifier.fit(input_fn=input_fn, steps=50)
metrics = classifier.evaluate(input_fn=input_fn, steps=1)
self.assertLess(metrics['loss'], 0.060)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:31,代码来源:sdca_estimator_test.py
示例3: testJointLinearModel
def testJointLinearModel(self):
"""Tests that loss goes down with training."""
def input_fn():
return {
'age':
sparse_tensor.SparseTensor(
values=['1'], indices=[[0, 0]], dense_shape=[1, 1]),
'language':
sparse_tensor.SparseTensor(
values=['english'], indices=[[0, 0]], dense_shape=[1, 1])
}, constant_op.constant([[1]])
language = feature_column.sparse_column_with_hash_bucket('language', 100)
age = feature_column.sparse_column_with_hash_bucket('age', 2)
head = head_lib._multi_class_head(n_classes=2)
classifier = _joint_linear_estimator(head, feature_columns=[age, language])
classifier.fit(input_fn=input_fn, steps=1000)
loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss']
classifier.fit(input_fn=input_fn, steps=2000)
loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss']
self.assertLess(loss2, loss1)
self.assertLess(loss2, 0.01)
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:25,代码来源:composable_model_test.py
示例4: testCrossedColumnNameCreatesSortedNames
def testCrossedColumnNameCreatesSortedNames(self):
a = fc.sparse_column_with_hash_bucket("aaa", hash_bucket_size=100)
b = fc.sparse_column_with_hash_bucket("bbb", hash_bucket_size=100)
bucket = fc.bucketized_column(fc.real_valued_column("cost"), [0, 4])
crossed = fc.crossed_column(set([b, bucket, a]), hash_bucket_size=10000)
self.assertEqual("aaa_X_bbb_X_cost_bucketized", crossed.name,
"name should be generated by sorted column names")
self.assertEqual("aaa", crossed.columns[0].name)
self.assertEqual("bbb", crossed.columns[1].name)
self.assertEqual("cost_bucketized", crossed.columns[2].name)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:11,代码来源:feature_column_test.py
示例5: testSparseColumnWithHashBucket
def testSparseColumnWithHashBucket(self):
a = fc.sparse_column_with_hash_bucket("aaa", hash_bucket_size=100)
self.assertEqual(a.name, "aaa")
self.assertEqual(a.dtype, dtypes.string)
a = fc.sparse_column_with_hash_bucket(
"aaa", hash_bucket_size=100, dtype=dtypes.int64)
self.assertEqual(a.name, "aaa")
self.assertEqual(a.dtype, dtypes.int64)
with self.assertRaisesRegexp(ValueError, "dtype must be string or integer"):
a = fc.sparse_column_with_hash_bucket(
"aaa", hash_bucket_size=100, dtype=dtypes.float32)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:13,代码来源:feature_column_test.py
示例6: testCreateSequenceFeatureSpec
def testCreateSequenceFeatureSpec(self):
sparse_col = fc.sparse_column_with_hash_bucket(
"sparse_column", hash_bucket_size=100)
embedding_col = fc.embedding_column(
fc.sparse_column_with_hash_bucket(
"sparse_column_for_embedding", hash_bucket_size=10),
dimension=4)
sparse_id_col = fc.sparse_column_with_keys("id_column",
["marlo", "omar", "stringer"])
weighted_id_col = fc.weighted_sparse_column(sparse_id_col,
"id_weights_column")
real_valued_col1 = fc.real_valued_column("real_valued_column", dimension=2)
real_valued_col2 = fc.real_valued_column(
"real_valued_default_column", dimension=5, default_value=3.0)
real_valued_col3 = fc._real_valued_var_len_column(
"real_valued_var_len_column", default_value=3.0, is_sparse=True)
real_valued_col4 = fc._real_valued_var_len_column(
"real_valued_var_len_dense_column", default_value=4.0, is_sparse=False)
feature_columns = set([
sparse_col, embedding_col, weighted_id_col, real_valued_col1,
real_valued_col2, real_valued_col3, real_valued_col4
])
feature_spec = fc._create_sequence_feature_spec_for_parsing(feature_columns)
expected_feature_spec = {
"sparse_column":
parsing_ops.VarLenFeature(dtypes.string),
"sparse_column_for_embedding":
parsing_ops.VarLenFeature(dtypes.string),
"id_column":
parsing_ops.VarLenFeature(dtypes.string),
"id_weights_column":
parsing_ops.VarLenFeature(dtypes.float32),
"real_valued_column":
parsing_ops.FixedLenSequenceFeature(
shape=[2], dtype=dtypes.float32, allow_missing=False),
"real_valued_default_column":
parsing_ops.FixedLenSequenceFeature(
shape=[5], dtype=dtypes.float32, allow_missing=True),
"real_valued_var_len_column":
parsing_ops.VarLenFeature(dtype=dtypes.float32),
"real_valued_var_len_dense_column":
parsing_ops.FixedLenSequenceFeature(
shape=[], dtype=dtypes.float32, allow_missing=True,
default_value=4.0),
}
self.assertDictEqual(expected_feature_spec, feature_spec)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:50,代码来源:feature_column_test.py
示例7: testWeightedSparseFeatures
def testWeightedSparseFeatures(self):
"""Tests SDCALogisticClassifier with weighted sparse features."""
def input_fn():
return {
'example_id':
constant_op.constant(['1', '2', '3']),
'price':
sparse_tensor.SparseTensor(
values=[2., 3., 1.],
indices=[[0, 0], [1, 0], [2, 0]],
dense_shape=[3, 5]),
'country':
sparse_tensor.SparseTensor(
values=['IT', 'US', 'GB'],
indices=[[0, 0], [1, 0], [2, 0]],
dense_shape=[3, 5])
}, constant_op.constant([[1], [0], [1]])
country = feature_column_lib.sparse_column_with_hash_bucket(
'country', hash_bucket_size=5)
country_weighted_by_price = feature_column_lib.weighted_sparse_column(
country, 'price')
classifier = sdca_estimator.SDCALogisticClassifier(
example_id_column='example_id',
feature_columns=[country_weighted_by_price])
classifier.fit(input_fn=input_fn, steps=50)
metrics = classifier.evaluate(input_fn=input_fn, steps=1)
self.assertGreater(metrics['accuracy'], 0.9)
开发者ID:LUTAN,项目名称:tensorflow,代码行数:29,代码来源:sdca_estimator_test.py
示例8: testSparseFeatures
def testSparseFeatures(self):
"""Tests SDCALogisticClassifier with sparse features."""
def input_fn():
return {
'example_id':
constant_op.constant(['1', '2', '3']),
'price':
constant_op.constant([[0.4], [0.6], [0.3]]),
'country':
sparse_tensor.SparseTensor(
values=['IT', 'US', 'GB'],
indices=[[0, 0], [1, 3], [2, 1]],
dense_shape=[3, 5]),
'weights':
constant_op.constant([[1.0], [1.0], [1.0]])
}, constant_op.constant([[1], [0], [1]])
price = feature_column_lib.real_valued_column('price')
country = feature_column_lib.sparse_column_with_hash_bucket(
'country', hash_bucket_size=5)
classifier = sdca_estimator.SDCALogisticClassifier(
example_id_column='example_id',
feature_columns=[price, country],
weight_column_name='weights')
classifier.fit(input_fn=input_fn, steps=50)
metrics = classifier.evaluate(input_fn=input_fn, steps=1)
self.assertGreater(metrics['accuracy'], 0.9)
开发者ID:LUTAN,项目名称:tensorflow,代码行数:28,代码来源:sdca_estimator_test.py
示例9: testMixedFeatures
def testMixedFeatures(self):
"""Tests SDCALogisticClassifier with a mix of features."""
def input_fn():
return {
'example_id':
constant_op.constant(['1', '2', '3']),
'price':
constant_op.constant([[0.6], [0.8], [0.3]]),
'sq_footage':
constant_op.constant([[900.0], [700.0], [600.0]]),
'country':
sparse_tensor.SparseTensor(
values=['IT', 'US', 'GB'],
indices=[[0, 0], [1, 3], [2, 1]],
dense_shape=[3, 5]),
'weights':
constant_op.constant([[3.0], [1.0], [1.0]])
}, constant_op.constant([[1], [0], [1]])
price = feature_column_lib.real_valued_column('price')
sq_footage_bucket = feature_column_lib.bucketized_column(
feature_column_lib.real_valued_column('sq_footage'),
boundaries=[650.0, 800.0])
country = feature_column_lib.sparse_column_with_hash_bucket(
'country', hash_bucket_size=5)
sq_footage_country = feature_column_lib.crossed_column(
[sq_footage_bucket, country], hash_bucket_size=10)
classifier = sdca_estimator.SDCALogisticClassifier(
example_id_column='example_id',
feature_columns=[price, sq_footage_bucket, country, sq_footage_country],
weight_column_name='weights')
classifier.fit(input_fn=input_fn, steps=50)
metrics = classifier.evaluate(input_fn=input_fn, steps=1)
self.assertGreater(metrics['accuracy'], 0.9)
开发者ID:LUTAN,项目名称:tensorflow,代码行数:35,代码来源:sdca_estimator_test.py
示例10: testMakePlaceHolderTensorsForBaseFeatures
def testMakePlaceHolderTensorsForBaseFeatures(self):
sparse_col = fc.sparse_column_with_hash_bucket(
"sparse_column", hash_bucket_size=100)
real_valued_col = fc.real_valued_column("real_valued_column", 5)
vlen_real_valued_col = fc.real_valued_column(
"vlen_real_valued_column", dimension=None)
bucketized_col = fc.bucketized_column(
fc.real_valued_column("real_valued_column_for_bucketization"), [0, 4])
feature_columns = set(
[sparse_col, real_valued_col, vlen_real_valued_col, bucketized_col])
placeholders = (
fc.make_place_holder_tensors_for_base_features(feature_columns))
self.assertEqual(4, len(placeholders))
self.assertTrue(
isinstance(placeholders["sparse_column"],
sparse_tensor_lib.SparseTensor))
self.assertTrue(
isinstance(placeholders["vlen_real_valued_column"],
sparse_tensor_lib.SparseTensor))
placeholder = placeholders["real_valued_column"]
self.assertGreaterEqual(
placeholder.name.find(u"Placeholder_real_valued_column"), 0)
self.assertEqual(dtypes.float32, placeholder.dtype)
self.assertEqual([None, 5], placeholder.get_shape().as_list())
placeholder = placeholders["real_valued_column_for_bucketization"]
self.assertGreaterEqual(
placeholder.name.find(
u"Placeholder_real_valued_column_for_bucketization"), 0)
self.assertEqual(dtypes.float32, placeholder.dtype)
self.assertEqual([None, 1], placeholder.get_shape().as_list())
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:32,代码来源:feature_column_test.py
示例11: testExport
def testExport(self):
"""Tests export model for servo."""
def input_fn():
return {
'age':
constant_op.constant([1]),
'language':
sparse_tensor.SparseTensor(
values=['english'], indices=[[0, 0]], dense_shape=[1, 1])
}, constant_op.constant([[1]])
language = feature_column.sparse_column_with_hash_bucket('language', 100)
feature_columns = [
feature_column.real_valued_column('age'),
feature_column.embedding_column(
language, dimension=1)
]
classifier = debug.DebugClassifier(config=run_config.RunConfig(
tf_random_seed=1))
classifier.fit(input_fn=input_fn, steps=5)
def default_input_fn(unused_estimator, examples):
return feature_column_ops.parse_feature_columns_from_examples(
examples, feature_columns)
export_dir = tempfile.mkdtemp()
classifier.export(export_dir, input_fn=default_input_fn)
开发者ID:eduardofv,项目名称:tensorflow,代码行数:29,代码来源:debug_test.py
示例12: testCrossedColumnNotSupportRealValuedColumn
def testCrossedColumnNotSupportRealValuedColumn(self):
b = fc.sparse_column_with_hash_bucket("bbb", hash_bucket_size=100)
with self.assertRaisesRegexp(
TypeError, "columns must be a set of _SparseColumn, _CrossedColumn, "
"or _BucketizedColumn instances"):
fc.crossed_column(
set([b, fc.real_valued_column("real")]), hash_bucket_size=10000)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:7,代码来源:feature_column_test.py
示例13: testSparseFeatures
def testSparseFeatures(self):
"""Tests SVM classifier with (hashed) sparse features."""
def input_fn():
return {
'example_id':
constant_op.constant(['1', '2', '3']),
'price':
constant_op.constant([[0.8], [0.6], [0.3]]),
'country':
sparse_tensor.SparseTensor(
values=['IT', 'US', 'GB'],
indices=[[0, 0], [1, 0], [2, 0]],
dense_shape=[3, 1]),
}, constant_op.constant([[0], [1], [1]])
price = feature_column.real_valued_column('price')
country = feature_column.sparse_column_with_hash_bucket(
'country', hash_bucket_size=5)
svm_classifier = svm.SVM(feature_columns=[price, country],
example_id_column='example_id',
l1_regularization=0.0,
l2_regularization=1.0)
svm_classifier.fit(input_fn=input_fn, steps=30)
accuracy = svm_classifier.evaluate(input_fn=input_fn, steps=1)['accuracy']
self.assertAlmostEqual(accuracy, 1.0, places=3)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:26,代码来源:svm_test.py
示例14: testEmbeddingColumn
def testEmbeddingColumn(self):
a = fc.sparse_column_with_hash_bucket(
"aaa", hash_bucket_size=100, combiner="sum")
b = fc.embedding_column(a, dimension=4, combiner="mean")
self.assertEqual(b.sparse_id_column.name, "aaa")
self.assertEqual(b.dimension, 4)
self.assertEqual(b.combiner, "mean")
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:7,代码来源:feature_column_test.py
示例15: testRegression_TensorData
def testRegression_TensorData(self):
"""Tests regression using tensor data as input."""
def _input_fn(num_epochs=None):
features = {
'age':
input_lib.limit_epochs(
constant_op.constant([[.8], [.15], [0.]]),
num_epochs=num_epochs),
'language':
sparse_tensor.SparseTensor(
values=input_lib.limit_epochs(
['en', 'fr', 'zh'], num_epochs=num_epochs),
indices=[[0, 0], [0, 1], [2, 0]],
dense_shape=[3, 2])
}
return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32)
language_column = feature_column.sparse_column_with_hash_bucket(
'language', hash_bucket_size=20)
feature_columns = [
feature_column.embedding_column(
language_column, dimension=1),
feature_column.real_valued_column('age')
]
regressor = dnn.DNNRegressor(
feature_columns=feature_columns,
hidden_units=[3, 3],
config=run_config.RunConfig(tf_random_seed=1))
regressor.fit(input_fn=_input_fn, steps=200)
scores = regressor.evaluate(input_fn=_input_fn, steps=1)
self.assertIn('loss', scores)
开发者ID:willdzeng,项目名称:tensorflow,代码行数:35,代码来源:dnn_test.py
示例16: testExport
def testExport(self):
"""Tests export model for servo."""
def input_fn():
return {
'age':
constant_op.constant([1]),
'language':
sparse_tensor.SparseTensor(
values=['english'], indices=[[0, 0]], dense_shape=[1, 1])
}, constant_op.constant([[1]])
language = feature_column.sparse_column_with_hash_bucket('language', 100)
feature_columns = [
feature_column.real_valued_column('age'),
feature_column.embedding_column(
language, dimension=1)
]
classifier = dnn.DNNClassifier(
feature_columns=feature_columns, hidden_units=[3, 3])
classifier.fit(input_fn=input_fn, steps=5)
export_dir = tempfile.mkdtemp()
classifier.export(export_dir)
开发者ID:willdzeng,项目名称:tensorflow,代码行数:25,代码来源:dnn_test.py
示例17: testSparseColumnHashBucketDeepCopy
def testSparseColumnHashBucketDeepCopy(self):
"""Tests deepcopy of sparse_column_with_hash_bucket."""
column = fc.sparse_column_with_hash_bucket("a", 10)
self.assertEqual("a", column.name)
column_copy = copy.deepcopy(column)
self.assertEqual("a", column_copy.name)
self.assertEqual(10, column_copy.bucket_size)
self.assertFalse(column_copy.is_integerized)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:8,代码来源:feature_column_test.py
示例18: testMultipliesGradient
def testMultipliesGradient(self):
embedding_language = feature_column.embedding_column(
feature_column.sparse_column_with_hash_bucket('language', 10),
dimension=1,
initializer=init_ops.constant_initializer(0.1))
embedding_wire = feature_column.embedding_column(
feature_column.sparse_column_with_hash_bucket('wire', 10),
dimension=1,
initializer=init_ops.constant_initializer(0.1))
params = {
'feature_columns': [embedding_language, embedding_wire],
'head': head_lib._multi_class_head(2),
'hidden_units': [1],
# Set lr mult to 0. to keep embeddings constant.
'embedding_lr_multipliers': {
embedding_language: 0.0
},
}
features = {
'language':
sparse_tensor.SparseTensor(
values=['en', 'fr', 'zh'],
indices=[[0, 0], [1, 0], [2, 0]],
dense_shape=[3, 1]),
'wire':
sparse_tensor.SparseTensor(
values=['omar', 'stringer', 'marlo'],
indices=[[0, 0], [1, 0], [2, 0]],
dense_shape=[3, 1]),
}
labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32)
model_ops = dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN,
params)
with monitored_session.MonitoredSession() as sess:
language_var = dnn_linear_combined._get_embedding_variable(
embedding_language, 'dnn', 'dnn/input_from_feature_columns')
wire_var = dnn_linear_combined._get_embedding_variable(
embedding_wire, 'dnn', 'dnn/input_from_feature_columns')
for _ in range(2):
_, language_value, wire_value = sess.run(
[model_ops.train_op, language_var, wire_var])
initial_value = np.full_like(language_value, 0.1)
self.assertTrue(np.all(np.isclose(language_value, initial_value)))
self.assertFalse(np.all(np.isclose(wire_value, initial_value)))
开发者ID:willdzeng,项目名称:tensorflow,代码行数:45,代码来源:dnn_test.py
示例19: test_make_parsing_export_strategy
def test_make_parsing_export_strategy(self):
"""Only tests that an ExportStrategy instance is created."""
sparse_col = fc.sparse_column_with_hash_bucket(
"sparse_column", hash_bucket_size=100)
embedding_col = fc.embedding_column(
fc.sparse_column_with_hash_bucket(
"sparse_column_for_embedding", hash_bucket_size=10),
dimension=4)
real_valued_col1 = fc.real_valued_column("real_valued_column1")
bucketized_col1 = fc.bucketized_column(
fc.real_valued_column("real_valued_column_for_bucketization1"), [0, 4])
feature_columns = [sparse_col, embedding_col, real_valued_col1,
bucketized_col1]
export_strategy = saved_model_export_utils.make_parsing_export_strategy(
feature_columns=feature_columns)
self.assertTrue(
isinstance(export_strategy, export_strategy_lib.ExportStrategy))
开发者ID:AutumnQYN,项目名称:tensorflow,代码行数:18,代码来源:saved_model_export_utils_test.py
示例20: testEmbeddingColumnDeepCopy
def testEmbeddingColumnDeepCopy(self):
a = fc.sparse_column_with_hash_bucket(
"aaa", hash_bucket_size=100, combiner="sum")
column = fc.embedding_column(a, dimension=4, combiner="mean")
column_copy = copy.deepcopy(column)
self.assertEqual(column_copy.name, "aaa_embedding")
self.assertEqual(column_copy.sparse_id_column.name, "aaa")
self.assertEqual(column_copy.dimension, 4)
self.assertEqual(column_copy.combiner, "mean")
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:9,代码来源:feature_column_test.py
注:本文中的tensorflow.contrib.layers.python.layers.feature_column.sparse_column_with_hash_bucket函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论