• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python feature_column.real_valued_column函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.contrib.layers.python.layers.feature_column.real_valued_column函数的典型用法代码示例。如果您正苦于以下问题:Python real_valued_column函数的具体用法?Python real_valued_column怎么用?Python real_valued_column使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了real_valued_column函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: testMixedFeatures

  def testMixedFeatures(self):
    """Tests SDCALogisticClassifier with a mix of features."""

    def input_fn():
      return {
          'example_id':
              constant_op.constant(['1', '2', '3']),
          'price':
              constant_op.constant([[0.6], [0.8], [0.3]]),
          'sq_footage':
              constant_op.constant([[900.0], [700.0], [600.0]]),
          'country':
              sparse_tensor.SparseTensor(
                  values=['IT', 'US', 'GB'],
                  indices=[[0, 0], [1, 3], [2, 1]],
                  dense_shape=[3, 5]),
          'weights':
              constant_op.constant([[3.0], [1.0], [1.0]])
      }, constant_op.constant([[1], [0], [1]])

    price = feature_column_lib.real_valued_column('price')
    sq_footage_bucket = feature_column_lib.bucketized_column(
        feature_column_lib.real_valued_column('sq_footage'),
        boundaries=[650.0, 800.0])
    country = feature_column_lib.sparse_column_with_hash_bucket(
        'country', hash_bucket_size=5)
    sq_footage_country = feature_column_lib.crossed_column(
        [sq_footage_bucket, country], hash_bucket_size=10)
    classifier = sdca_estimator.SDCALogisticClassifier(
        example_id_column='example_id',
        feature_columns=[price, sq_footage_bucket, country, sq_footage_country],
        weight_column_name='weights')
    classifier.fit(input_fn=input_fn, steps=50)
    metrics = classifier.evaluate(input_fn=input_fn, steps=1)
    self.assertGreater(metrics['accuracy'], 0.9)
开发者ID:LUTAN,项目名称:tensorflow,代码行数:35,代码来源:sdca_estimator_test.py


示例2: testRealValuedColumnDensification

  def testRealValuedColumnDensification(self):
    """Tests densification behavior of `RealValuedColumn`."""
    # No default value, dimension 1 float.
    real_valued_column = fc.real_valued_column(
        "sparse_real_valued1", dimension=None)
    sparse_tensor = sparse_tensor_lib.SparseTensor(
        values=[2.0, 5.0], indices=[[0, 0], [2, 0]], dense_shape=[3, 1])
    densified_output = real_valued_column._to_dnn_input_layer(sparse_tensor)

    # With default value, dimension 2 int.
    real_valued_column_with_default = fc.real_valued_column(
        "sparse_real_valued2",
        dimension=None,
        default_value=-1,
        dtype=dtypes.int32)
    sparse_tensor2 = sparse_tensor_lib.SparseTensor(
        values=[2, 5, 9, 0],
        indices=[[0, 0], [1, 1], [2, 0], [2, 1]],
        dense_shape=[3, 2])
    densified_output2 = real_valued_column_with_default._to_dnn_input_layer(
        sparse_tensor2)

    with self.test_session() as sess:
      densified_output_eval, densified_output_eval2 = sess.run(
          [densified_output, densified_output2])
      self.assertAllEqual(densified_output_eval, [[2.0], [0.0], [5.0]])
      self.assertAllEqual(densified_output_eval2, [[2, -1], [-1, 5], [9, 0]])
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:27,代码来源:feature_column_test.py


示例3: testRealValuedFeaturesWithBigL1Regularization

  def testRealValuedFeaturesWithBigL1Regularization(self):
    """Tests SVM classifier with real valued features and L2 regularization."""

    def input_fn():
      return {
          'example_id': constant_op.constant(['1', '2', '3']),
          'feature1': constant_op.constant([0.5, 1.0, 1.0]),
          'feature2': constant_op.constant([[1.0], [-1.0], [0.5]]),
      }, constant_op.constant([[1], [0], [1]])

    feature1 = feature_column.real_valued_column('feature1')
    feature2 = feature_column.real_valued_column('feature2')
    svm_classifier = svm.SVM(feature_columns=[feature1, feature2],
                             example_id_column='example_id',
                             l1_regularization=3.0,
                             l2_regularization=1.0)
    svm_classifier.fit(input_fn=input_fn, steps=30)
    metrics = svm_classifier.evaluate(input_fn=input_fn, steps=1)
    loss = metrics['loss']
    accuracy = metrics['accuracy']

    # When L1 regularization parameter is large, the loss due to regularization
    # outweights the unregularized loss. In this case, the classifier will favor
    # very small weights (in current case 0) resulting both big unregularized
    # loss and bad accuracy.
    self.assertAlmostEqual(loss, 1.0, places=3)
    self.assertAlmostEqual(accuracy, 1 / 3, places=3)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:27,代码来源:svm_test.py


示例4: testRealValuedFeaturesWithL2Regularization

  def testRealValuedFeaturesWithL2Regularization(self):
    """Tests SVM classifier with real valued features and L2 regularization."""

    def input_fn():
      return {
          'example_id': constant_op.constant(['1', '2', '3']),
          'feature1': constant_op.constant([0.5, 1.0, 1.0]),
          'feature2': constant_op.constant([1.0, -1.0, 0.5]),
      }, constant_op.constant([1, 0, 1])

    feature1 = feature_column.real_valued_column('feature1')
    feature2 = feature_column.real_valued_column('feature2')
    svm_classifier = svm.SVM(feature_columns=[feature1, feature2],
                             example_id_column='example_id',
                             l1_regularization=0.0,
                             l2_regularization=1.0)
    svm_classifier.fit(input_fn=input_fn, steps=30)
    metrics = svm_classifier.evaluate(input_fn=input_fn, steps=1)
    loss = metrics['loss']
    accuracy = metrics['accuracy']
    # The points are in general separable. Also, if there was no regularization,
    # the margin inequalities would be satisfied too (for instance by w1=1.0,
    # w2=5.0). Due to regularization, smaller weights are chosen. This results
    # to a small but non-zero uneregularized loss. Still, all the predictions
    # will be correct resulting to perfect accuracy.
    self.assertLess(loss, 0.1)
    self.assertAlmostEqual(accuracy, 1.0, places=3)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:27,代码来源:svm_test.py


示例5: testRealValuedFeaturesPerfectlySeparable

  def testRealValuedFeaturesPerfectlySeparable(self):
    """Tests SVM classifier with real valued features."""

    def input_fn():
      return {
          'example_id': constant_op.constant(['1', '2', '3']),
          'feature1': constant_op.constant([[0.0], [1.0], [3.0]]),
          'feature2': constant_op.constant([[1.0], [-1.2], [1.0]]),
      }, constant_op.constant([[1], [0], [1]])

    feature1 = feature_column.real_valued_column('feature1')
    feature2 = feature_column.real_valued_column('feature2')
    svm_classifier = svm.SVM(feature_columns=[feature1, feature2],
                             example_id_column='example_id',
                             l1_regularization=0.0,
                             l2_regularization=0.0)
    svm_classifier.fit(input_fn=input_fn, steps=30)
    metrics = svm_classifier.evaluate(input_fn=input_fn, steps=1)
    loss = metrics['loss']
    accuracy = metrics['accuracy']
    # The points are not only separable but there exist weights (for instance
    # w1=0.0, w2=1.0) that satisfy the margin inequalities (y_i* w^T*x_i >=1).
    # The unregularized loss should therefore be 0.0.
    self.assertAlmostEqual(loss, 0.0, places=3)
    self.assertAlmostEqual(accuracy, 1.0, places=3)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:25,代码来源:svm_test.py


示例6: testBucketizedFeatures

  def testBucketizedFeatures(self):
    """Tests SDCALogisticClassifier with bucketized features."""

    def input_fn():
      return {
          'example_id': constant_op.constant(['1', '2', '3']),
          'price': constant_op.constant([600.0, 1000.0, 400.0]),
          'sq_footage': constant_op.constant([[1000.0], [600.0], [700.0]]),
          'weights': constant_op.constant([[1.0], [1.0], [1.0]])
      }, constant_op.constant([[1], [0], [1]])

    with self._single_threaded_test_session():
      price_bucket = feature_column_lib.bucketized_column(
          feature_column_lib.real_valued_column('price'),
          boundaries=[500.0, 700.0])
      sq_footage_bucket = feature_column_lib.bucketized_column(
          feature_column_lib.real_valued_column('sq_footage'),
          boundaries=[650.0])
      classifier = sdca_estimator.SDCALogisticClassifier(
          example_id_column='example_id',
          feature_columns=[price_bucket, sq_footage_bucket],
          weight_column_name='weights',
          l2_regularization=1.0)
      classifier.fit(input_fn=input_fn, steps=50)
      metrics = classifier.evaluate(input_fn=input_fn, steps=1)
      self.assertGreater(metrics['accuracy'], 0.9)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:26,代码来源:sdca_estimator_test.py


示例7: testPrepareInputsForRnnBatchSize2

  def testPrepareInputsForRnnBatchSize2(self):

    num_unroll = 3

    expected = [
        np.array([[11., 31., 5., 7.], [21., 41., 6., 8.]]),
        np.array([[12., 32., 5., 7.], [22., 42., 6., 8.]]),
        np.array([[13., 33., 5., 7.], [23., 43., 6., 8.]])
    ]

    sequence_features = {
        'seq_feature0':
            constant_op.constant([[11., 12., 13.], [21., 22., 23.]]),
        'seq_feature1':
            constant_op.constant([[31., 32., 33.], [41., 42., 43.]])
    }

    sequence_feature_columns = [
        feature_column.real_valued_column(
            'seq_feature0', dimension=1),
        feature_column.real_valued_column(
            'seq_feature1', dimension=1),
    ]

    context_features = {
        'ctx_feature0': constant_op.constant([[5.], [6.]]),
        'ctx_feature1': constant_op.constant([[7.], [8.]])
    }

    self._test_prepare_inputs_for_rnn(sequence_features, context_features,
                                      sequence_feature_columns, num_unroll,
                                      expected)
开发者ID:finardi,项目名称:tensorflow,代码行数:32,代码来源:state_saving_rnn_estimator_test.py


示例8: testBiasAndOtherColumns

  def testBiasAndOtherColumns(self):
    """SDCALinearRegressor has valid bias weight with other columns present."""

    def input_fn():
      """Testing the bias weight when there are other features present.

      1/2 of the instances in this input have feature 'a', the rest have
      feature 'b', and we expect the bias to be added to each instance as well.
      0.4 of all instances that have feature 'a' are positive, and 0.2 of all
      instances that have feature 'b' are positive. The labels in the dataset
      are ordered to appear shuffled since SDCA expects shuffled data, and
      converges faster with this pseudo-random ordering.
      If the bias was centered we would expect the weights to be:
      bias: 0.3
      a: 0.1
      b: -0.1
      Until b/29339026 is resolved, the bias gets regularized with the same
      global value for the other columns, and so the expected weights get
      shifted and are:
      bias: 0.2
      a: 0.2
      b: 0.0
      Returns:
        The test dataset.
      """
      num_examples = 200
      half = int(num_examples / 2)
      return {
          'example_id':
              constant_op.constant([str(x + 1) for x in range(num_examples)]),
          'a':
              constant_op.constant([[1]] * int(half) + [[0]] * int(half)),
          'b':
              constant_op.constant([[0]] * int(half) + [[1]] * int(half)),
      }, constant_op.constant(
          [[x]
           for x in [1, 0, 0, 1, 1, 0, 0, 0, 1, 0] * int(half / 10) +
           [0, 1, 0, 0, 0, 0, 0, 0, 1, 0] * int(half / 10)])

    with self._single_threaded_test_session():
      regressor = sdca_estimator.SDCALinearRegressor(
          example_id_column='example_id',
          feature_columns=[
              feature_column_lib.real_valued_column('a'),
              feature_column_lib.real_valued_column('b')
          ])

      regressor.fit(input_fn=input_fn, steps=200)

      variable_names = regressor.get_variable_names()
      self.assertIn('linear/bias_weight', variable_names)
      self.assertIn('linear/a/weight', variable_names)
      self.assertIn('linear/b/weight', variable_names)
      # TODO(b/29339026): Change the expected results to expect a centered bias.
      self.assertNear(
          regressor.get_variable_value('linear/bias_weight')[0], 0.2, err=0.05)
      self.assertNear(
          regressor.get_variable_value('linear/a/weight')[0], 0.2, err=0.05)
      self.assertNear(
          regressor.get_variable_value('linear/b/weight')[0], 0.0, err=0.05)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:60,代码来源:sdca_estimator_test.py


示例9: testRealValuedFeaturesWithMildL1Regularization

  def testRealValuedFeaturesWithMildL1Regularization(self):
    """Tests SVM classifier with real valued features and L2 regularization."""

    def input_fn():
      return {
          'example_id': constant_op.constant(['1', '2', '3']),
          'feature1': constant_op.constant([[0.5], [1.0], [1.0]]),
          'feature2': constant_op.constant([[1.0], [-1.0], [0.5]]),
      }, constant_op.constant([[1], [0], [1]])

    feature1 = feature_column.real_valued_column('feature1')
    feature2 = feature_column.real_valued_column('feature2')
    svm_classifier = svm.SVM(feature_columns=[feature1, feature2],
                             example_id_column='example_id',
                             l1_regularization=0.5,
                             l2_regularization=1.0)
    svm_classifier.fit(input_fn=input_fn, steps=30)
    metrics = svm_classifier.evaluate(input_fn=input_fn, steps=1)
    loss = metrics['loss']
    accuracy = metrics['accuracy']

    # Adding small L1 regularization favors even smaller weights. This results
    # to somewhat moderate unregularized loss (bigger than the one when there is
    # no L1 regularization. Still, since L1 is small, all the predictions will
    # be correct resulting to perfect accuracy.
    self.assertGreater(loss, 0.1)
    self.assertAlmostEqual(accuracy, 1.0, places=3)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:27,代码来源:svm_test.py


示例10: testMakePlaceHolderTensorsForBaseFeatures

  def testMakePlaceHolderTensorsForBaseFeatures(self):
    sparse_col = fc.sparse_column_with_hash_bucket(
        "sparse_column", hash_bucket_size=100)
    real_valued_col = fc.real_valued_column("real_valued_column", 5)
    vlen_real_valued_col = fc.real_valued_column(
        "vlen_real_valued_column", dimension=None)

    bucketized_col = fc.bucketized_column(
        fc.real_valued_column("real_valued_column_for_bucketization"), [0, 4])
    feature_columns = set(
        [sparse_col, real_valued_col, vlen_real_valued_col, bucketized_col])
    placeholders = (
        fc.make_place_holder_tensors_for_base_features(feature_columns))

    self.assertEqual(4, len(placeholders))
    self.assertTrue(
        isinstance(placeholders["sparse_column"],
                   sparse_tensor_lib.SparseTensor))
    self.assertTrue(
        isinstance(placeholders["vlen_real_valued_column"],
                   sparse_tensor_lib.SparseTensor))
    placeholder = placeholders["real_valued_column"]
    self.assertGreaterEqual(
        placeholder.name.find(u"Placeholder_real_valued_column"), 0)
    self.assertEqual(dtypes.float32, placeholder.dtype)
    self.assertEqual([None, 5], placeholder.get_shape().as_list())
    placeholder = placeholders["real_valued_column_for_bucketization"]
    self.assertGreaterEqual(
        placeholder.name.find(
            u"Placeholder_real_valued_column_for_bucketization"), 0)
    self.assertEqual(dtypes.float32, placeholder.dtype)
    self.assertEqual([None, 1], placeholder.get_shape().as_list())
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:32,代码来源:feature_column_test.py


示例11: testRealValuedColumnDtypes

  def testRealValuedColumnDtypes(self):
    rvc = fc.real_valued_column("rvc")
    self.assertDictEqual({
        "rvc": parsing_ops.FixedLenFeature([1], dtype=dtypes.float32)
    }, rvc.config)

    rvc = fc.real_valued_column("rvc", dtype=dtypes.int32)
    self.assertDictEqual({
        "rvc": parsing_ops.FixedLenFeature([1], dtype=dtypes.int32)
    }, rvc.config)

    with self.assertRaisesRegexp(ValueError,
                                 "dtype must be convertible to float"):
      fc.real_valued_column("rvc", dtype=dtypes.string)
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:14,代码来源:feature_column_test.py


示例12: testCreateSequenceFeatureSpec

  def testCreateSequenceFeatureSpec(self):
    sparse_col = fc.sparse_column_with_hash_bucket(
        "sparse_column", hash_bucket_size=100)
    embedding_col = fc.embedding_column(
        fc.sparse_column_with_hash_bucket(
            "sparse_column_for_embedding", hash_bucket_size=10),
        dimension=4)
    sparse_id_col = fc.sparse_column_with_keys("id_column",
                                               ["marlo", "omar", "stringer"])
    weighted_id_col = fc.weighted_sparse_column(sparse_id_col,
                                                "id_weights_column")
    real_valued_col1 = fc.real_valued_column("real_valued_column", dimension=2)
    real_valued_col2 = fc.real_valued_column(
        "real_valued_default_column", dimension=5, default_value=3.0)
    real_valued_col3 = fc._real_valued_var_len_column(
        "real_valued_var_len_column", default_value=3.0, is_sparse=True)
    real_valued_col4 = fc._real_valued_var_len_column(
        "real_valued_var_len_dense_column", default_value=4.0, is_sparse=False)

    feature_columns = set([
        sparse_col, embedding_col, weighted_id_col, real_valued_col1,
        real_valued_col2, real_valued_col3, real_valued_col4
    ])

    feature_spec = fc._create_sequence_feature_spec_for_parsing(feature_columns)

    expected_feature_spec = {
        "sparse_column":
            parsing_ops.VarLenFeature(dtypes.string),
        "sparse_column_for_embedding":
            parsing_ops.VarLenFeature(dtypes.string),
        "id_column":
            parsing_ops.VarLenFeature(dtypes.string),
        "id_weights_column":
            parsing_ops.VarLenFeature(dtypes.float32),
        "real_valued_column":
            parsing_ops.FixedLenSequenceFeature(
                shape=[2], dtype=dtypes.float32, allow_missing=False),
        "real_valued_default_column":
            parsing_ops.FixedLenSequenceFeature(
                shape=[5], dtype=dtypes.float32, allow_missing=True),
        "real_valued_var_len_column":
            parsing_ops.VarLenFeature(dtype=dtypes.float32),
        "real_valued_var_len_dense_column":
            parsing_ops.FixedLenSequenceFeature(
                shape=[], dtype=dtypes.float32, allow_missing=True,
                default_value=4.0),
    }

    self.assertDictEqual(expected_feature_spec, feature_spec)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:50,代码来源:feature_column_test.py


示例13: testBiasAndOtherColumnsFabricatedCentered

  def testBiasAndOtherColumnsFabricatedCentered(self):
    """SDCALinearRegressor has valid bias weight when instances are centered."""

    def input_fn():
      """Testing the bias weight when there are other features present.

      1/2 of the instances in this input have feature 'a', the rest have
      feature 'b', and we expect the bias to be added to each instance as well.
      0.1 of all instances that have feature 'a' have a label of 1, and 0.1 of
      all instances that have feature 'b' have a label of -1.
      We can expect the weights to be:
      bias: 0.0
      a: 0.1
      b: -0.1
      Returns:
        The test dataset.
      """
      num_examples = 200
      half = int(num_examples / 2)
      return {
          'example_id':
              constant_op.constant([str(x + 1) for x in range(num_examples)]),
          'a':
              constant_op.constant([[1]] * int(half) + [[0]] * int(half)),
          'b':
              constant_op.constant([[0]] * int(half) + [[1]] * int(half)),
      }, constant_op.constant([[1 if x % 10 == 0 else 0] for x in range(half)] +
                              [[-1 if x % 10 == 0 else 0] for x in range(half)])

    with self._single_threaded_test_session():
      regressor = sdca_estimator.SDCALinearRegressor(
          example_id_column='example_id',
          feature_columns=[
              feature_column_lib.real_valued_column('a'),
              feature_column_lib.real_valued_column('b')
          ])

      regressor.fit(input_fn=input_fn, steps=100)

      variable_names = regressor.get_variable_names()
      self.assertIn('linear/bias_weight', variable_names)
      self.assertIn('linear/a/weight', variable_names)
      self.assertIn('linear/b/weight', variable_names)
      self.assertNear(
          regressor.get_variable_value('linear/bias_weight')[0], 0.0, err=0.05)
      self.assertNear(
          regressor.get_variable_value('linear/a/weight')[0], 0.1, err=0.05)
      self.assertNear(
          regressor.get_variable_value('linear/b/weight')[0], -0.1, err=0.05)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:49,代码来源:sdca_estimator_test.py


示例14: _getModelFnOpsForMode

 def _getModelFnOpsForMode(self, mode):
   """Helper for testGetRnnModelFn{Train,Eval,Infer}()."""
   num_units = [4]
   seq_columns = [
       feature_column.real_valued_column(
           'inputs', dimension=1)
   ]
   features = {
       'inputs': constant_op.constant([1., 2., 3.]),
   }
   labels = constant_op.constant([1., 0., 1.])
   model_fn = ssre._get_rnn_model_fn(
       cell_type='basic_rnn',
       target_column=target_column_lib.multi_class_target(n_classes=2),
       optimizer='SGD',
       num_unroll=2,
       num_units=num_units,
       num_threads=1,
       queue_capacity=10,
       batch_size=1,
       # Only CLASSIFICATION yields eval metrics to test for.
       problem_type=constants.ProblemType.CLASSIFICATION,
       sequence_feature_columns=seq_columns,
       context_feature_columns=None,
       learning_rate=0.1)
   model_fn_ops = model_fn(features=features, labels=labels, mode=mode)
   return model_fn_ops
开发者ID:finardi,项目名称:tensorflow,代码行数:27,代码来源:state_saving_rnn_estimator_test.py


示例15: testMultiDimensionalRealValuedFeaturesWithL2Regularization

  def testMultiDimensionalRealValuedFeaturesWithL2Regularization(self):
    """Tests SVM with multi-dimensional real features and L2 regularization."""

    # This is identical to the one in testRealValuedFeaturesWithL2Regularization
    # where 2 tensors (dense features) of shape [3, 1] have been replaced by a
    # single tensor (dense feature) of shape [3, 2].
    def input_fn():
      return {
          'example_id':
              constant_op.constant(['1', '2', '3']),
          'multi_dim_feature':
              constant_op.constant([[0.5, 1.0], [1.0, -1.0], [1.0, 0.5]]),
      }, constant_op.constant([[1], [0], [1]])

    multi_dim_feature = feature_column.real_valued_column(
        'multi_dim_feature', dimension=2)
    svm_classifier = svm.SVM(feature_columns=[multi_dim_feature],
                             example_id_column='example_id',
                             l1_regularization=0.0,
                             l2_regularization=1.0)
    svm_classifier.fit(input_fn=input_fn, steps=30)
    metrics = svm_classifier.evaluate(input_fn=input_fn, steps=1)
    loss = metrics['loss']
    accuracy = metrics['accuracy']
    self.assertLess(loss, 0.1)
    self.assertAlmostEqual(accuracy, 1.0, places=3)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:26,代码来源:svm_test.py


示例16: test_checkpoint_and_export

  def test_checkpoint_and_export(self):
    model_dir = tempfile.mkdtemp()
    config = run_config_lib.RunConfig(save_checkpoints_steps=3)
    est = dnn.DNNClassifier(
        n_classes=3,
        feature_columns=[
            feature_column.real_valued_column('feature', dimension=4)
        ],
        hidden_units=[3, 3],
        model_dir=model_dir,
        config=config)

    exp_strategy = saved_model_export_utils.make_export_strategy(
        est, 'export_input', exports_to_keep=None)

    ex = experiment.Experiment(
        est,
        train_input_fn=test_data.iris_input_multiclass_fn,
        eval_input_fn=test_data.iris_input_multiclass_fn,
        export_strategies=(exp_strategy,),
        train_steps=8,
        checkpoint_and_export=True,
        eval_delay_secs=0)

    with test.mock.patch.object(ex, '_maybe_export'):
      with test.mock.patch.object(ex, '_call_evaluate'):
        ex.train_and_evaluate()
        # Eval and export are called after steps 1, 4, 7, and 8 (after training
        # is completed).
        self.assertEqual(ex._maybe_export.call_count, 4)
        self.assertEqual(ex._call_evaluate.call_count, 4)
开发者ID:Kongsea,项目名称:tensorflow,代码行数:31,代码来源:experiment_test.py


示例17: testExport

  def testExport(self):
    """Tests export model for servo."""

    def input_fn():
      return {
          'age':
              constant_op.constant([1]),
          'language':
              sparse_tensor.SparseTensor(
                  values=['english'], indices=[[0, 0]], dense_shape=[1, 1])
      }, constant_op.constant([[1]])

    language = feature_column.sparse_column_with_hash_bucket('language', 100)
    feature_columns = [
        feature_column.real_valued_column('age'),
        feature_column.embedding_column(
            language, dimension=1)
    ]

    classifier = debug.DebugClassifier(config=run_config.RunConfig(
        tf_random_seed=1))
    classifier.fit(input_fn=input_fn, steps=5)

    def default_input_fn(unused_estimator, examples):
      return feature_column_ops.parse_feature_columns_from_examples(
          examples, feature_columns)

    export_dir = tempfile.mkdtemp()
    classifier.export(export_dir, input_fn=default_input_fn)
开发者ID:eduardofv,项目名称:tensorflow,代码行数:29,代码来源:debug_test.py


示例18: testSparseFeatures

  def testSparseFeatures(self):
    """Tests SVM classifier with (hashed) sparse features."""

    def input_fn():
      return {
          'example_id':
              constant_op.constant(['1', '2', '3']),
          'price':
              constant_op.constant([[0.8], [0.6], [0.3]]),
          'country':
              sparse_tensor.SparseTensor(
                  values=['IT', 'US', 'GB'],
                  indices=[[0, 0], [1, 0], [2, 0]],
                  dense_shape=[3, 1]),
      }, constant_op.constant([[0], [1], [1]])

    price = feature_column.real_valued_column('price')
    country = feature_column.sparse_column_with_hash_bucket(
        'country', hash_bucket_size=5)
    svm_classifier = svm.SVM(feature_columns=[price, country],
                             example_id_column='example_id',
                             l1_regularization=0.0,
                             l2_regularization=1.0)
    svm_classifier.fit(input_fn=input_fn, steps=30)
    accuracy = svm_classifier.evaluate(input_fn=input_fn, steps=1)['accuracy']
    self.assertAlmostEqual(accuracy, 1.0, places=3)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:26,代码来源:svm_test.py


示例19: _make_experiment_fn

def _make_experiment_fn(output_dir):
  """Creates experiment for DNNBoostedTreeCombinedRegressor."""
  (x_train, y_train), (x_test,
                       y_test) = tf.keras.datasets.boston_housing.load_data()

  train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
      x={"x": x_train},
      y=y_train,
      batch_size=FLAGS.batch_size,
      num_epochs=None,
      shuffle=True)
  eval_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
      x={"x": x_test}, y=y_test, num_epochs=1, shuffle=False)

  feature_columns = [
      feature_column.real_valued_column("x", dimension=_BOSTON_NUM_FEATURES)
  ]
  feature_spec = tf.contrib.layers.create_feature_spec_for_parsing(
      feature_columns)
  serving_input_fn = input_fn_utils.build_parsing_serving_input_fn(feature_spec)
  export_strategies = [
      saved_model_export_utils.make_export_strategy(serving_input_fn)]
  return tf.contrib.learn.Experiment(
      estimator=_get_estimator(output_dir, feature_columns),
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
      train_steps=None,
      eval_steps=FLAGS.num_eval_steps,
      eval_metrics=None,
      export_strategies=export_strategies)
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:30,代码来源:boston_combined.py


示例20: testFitAndEvaluateMultiClassFullDontThrowException

  def testFitAndEvaluateMultiClassFullDontThrowException(self):
    learner_config = learner_pb2.LearnerConfig()
    learner_config.num_classes = 3
    learner_config.constraints.max_tree_depth = 1
    learner_config.multi_class_strategy = (
        learner_pb2.LearnerConfig.FULL_HESSIAN)

    model_dir = tempfile.mkdtemp()
    config = run_config.RunConfig()

    classifier = estimator.GradientBoostedDecisionTreeClassifier(
        learner_config=learner_config,
        n_classes=learner_config.num_classes,
        num_trees=1,
        examples_per_layer=7,
        model_dir=model_dir,
        config=config,
        center_bias=False,
        feature_columns=[contrib_feature_column.real_valued_column("x")])

    classifier.fit(input_fn=_multiclass_train_input_fn, steps=100)
    classifier.evaluate(input_fn=_eval_input_fn, steps=1)
    classifier.export(self._export_dir_base)
    result_iter = classifier.predict(input_fn=_eval_input_fn)
    for prediction_dict in result_iter:
      self.assertTrue("classes" in prediction_dict)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:26,代码来源:estimator_test.py



注:本文中的tensorflow.contrib.layers.python.layers.feature_column.real_valued_column函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap