• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python sequence_feature_column.sequence_categorical_column_with_identity函数代码 ...

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.contrib.feature_column.python.feature_column.sequence_feature_column.sequence_categorical_column_with_identity函数的典型用法代码示例。如果您正苦于以下问题:Python sequence_categorical_column_with_identity函数的具体用法?Python sequence_categorical_column_with_identity怎么用?Python sequence_categorical_column_with_identity使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了sequence_categorical_column_with_identity函数的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_sequence_length_with_empty_rows

  def test_sequence_length_with_empty_rows(self):
    """Tests _sequence_length when some examples do not have ids."""
    vocabulary_size = 3
    sparse_input_a = sparse_tensor.SparseTensorValue(
        # example 0, ids []
        # example 1, ids [2]
        # example 2, ids [0, 1]
        # example 3, ids []
        # example 4, ids [1]
        # example 5, ids []
        indices=((1, 0), (2, 0), (2, 1), (4, 0)),
        values=(2, 0, 1, 1),
        dense_shape=(6, 2))
    expected_sequence_length_a = [0, 1, 2, 0, 1, 0]
    categorical_column_a = sfc.sequence_categorical_column_with_identity(
        key='aaa', num_buckets=vocabulary_size)

    sparse_input_b = sparse_tensor.SparseTensorValue(
        # example 0, ids [2]
        # example 1, ids []
        # example 2, ids []
        # example 3, ids []
        # example 4, ids [1]
        # example 5, ids [0, 1]
        indices=((0, 0), (4, 0), (5, 0), (5, 1)),
        values=(2, 1, 0, 1),
        dense_shape=(6, 2))
    expected_sequence_length_b = [1, 0, 0, 0, 1, 2]
    categorical_column_b = sfc.sequence_categorical_column_with_identity(
        key='bbb', num_buckets=vocabulary_size)

    shared_embedding_columns = fc.shared_embedding_columns(
        [categorical_column_a, categorical_column_b], dimension=2)

    sequence_length_a = shared_embedding_columns[0]._get_sequence_dense_tensor(
        _LazyBuilder({
            'aaa': sparse_input_a
        }))[1]
    sequence_length_b = shared_embedding_columns[1]._get_sequence_dense_tensor(
        _LazyBuilder({
            'bbb': sparse_input_b
        }))[1]

    with monitored_session.MonitoredSession() as sess:
      self.assertAllEqual(
          expected_sequence_length_a, sequence_length_a.eval(session=sess))
      self.assertAllEqual(
          expected_sequence_length_b, sequence_length_b.eval(session=sess))
开发者ID:AnishShah,项目名称:tensorflow,代码行数:48,代码来源:sequence_feature_column_test.py


示例2: test_get_sequence_dense_tensor

  def test_get_sequence_dense_tensor(self):
    vocabulary_size = 3
    sparse_input = sparse_tensor.SparseTensorValue(
        # example 0, ids [2]
        # example 1, ids [0, 1]
        # example 2, ids []
        # example 3, ids [1]
        indices=((0, 0), (1, 0), (1, 1), (3, 0)),
        values=(2, 0, 1, 1),
        dense_shape=(4, 2))

    expected_lookups = [
        # example 0, ids [2]
        [[0., 0., 1.], [0., 0., 0.]],
        # example 1, ids [0, 1]
        [[1., 0., 0.], [0., 1., 0.]],
        # example 2, ids []
        [[0., 0., 0.], [0., 0., 0.]],
        # example 3, ids [1]
        [[0., 1., 0.], [0., 0., 0.]],
    ]

    categorical_column = sfc.sequence_categorical_column_with_identity(
        key='aaa', num_buckets=vocabulary_size)
    indicator_column = fc.indicator_column(categorical_column)

    indicator_tensor, _ = indicator_column._get_sequence_dense_tensor(
        _LazyBuilder({'aaa': sparse_input}))

    with monitored_session.MonitoredSession() as sess:
      self.assertAllEqual(expected_lookups, indicator_tensor.eval(session=sess))
开发者ID:AnishShah,项目名称:tensorflow,代码行数:31,代码来源:sequence_feature_column_test.py


示例3: test_indicator_column

  def test_indicator_column(self):
    vocabulary_size_a = 3
    sparse_input_a = sparse_tensor.SparseTensorValue(
        # example 0, ids [2]
        # example 1, ids [0, 1]
        indices=((0, 0), (1, 0), (1, 1)),
        values=(2, 0, 1),
        dense_shape=(2, 2))
    vocabulary_size_b = 2
    sparse_input_b = sparse_tensor.SparseTensorValue(
        # example 0, ids [1]
        # example 1, ids [1, 0]
        indices=((0, 0), (1, 0), (1, 1)),
        values=(1, 1, 0),
        dense_shape=(2, 2))

    expected_input_layer = [
        # example 0, ids_a [2], ids_b [1]
        [[0., 0., 1., 0., 1.], [0., 0., 0., 0., 0.]],
        # example 1, ids_a [0, 1], ids_b [1, 0]
        [[1., 0., 0., 0., 1.], [0., 1., 0., 1., 0.]],
    ]
    expected_sequence_length = [1, 2]

    categorical_column_a = sfc.sequence_categorical_column_with_identity(
        key='aaa', num_buckets=vocabulary_size_a)
    indicator_column_a = fc.indicator_column(categorical_column_a)
    categorical_column_b = sfc.sequence_categorical_column_with_identity(
        key='bbb', num_buckets=vocabulary_size_b)
    indicator_column_b = fc.indicator_column(categorical_column_b)
    input_layer, sequence_length = sfc.sequence_input_layer(
        features={
            'aaa': sparse_input_a,
            'bbb': sparse_input_b,
        },
        # Test that columns are reordered alphabetically.
        feature_columns=[indicator_column_b, indicator_column_a])

    with monitored_session.MonitoredSession() as sess:
      self.assertAllEqual(expected_input_layer, input_layer.eval(session=sess))
      self.assertAllEqual(
          expected_sequence_length, sequence_length.eval(session=sess))
开发者ID:AnishShah,项目名称:tensorflow,代码行数:42,代码来源:sequence_feature_column_test.py


示例4: test_sequence_length

  def test_sequence_length(self):
    vocabulary_size = 3

    sparse_input_a = sparse_tensor.SparseTensorValue(
        # example 0, ids [2]
        # example 1, ids [0, 1]
        indices=((0, 0), (1, 0), (1, 1)),
        values=(2, 0, 1),
        dense_shape=(2, 2))
    expected_sequence_length_a = [1, 2]
    categorical_column_a = sfc.sequence_categorical_column_with_identity(
        key='aaa', num_buckets=vocabulary_size)

    sparse_input_b = sparse_tensor.SparseTensorValue(
        # example 0, ids [0, 2]
        # example 1, ids [1]
        indices=((0, 0), (0, 1), (1, 0)),
        values=(0, 2, 1),
        dense_shape=(2, 2))
    expected_sequence_length_b = [2, 1]
    categorical_column_b = sfc.sequence_categorical_column_with_identity(
        key='bbb', num_buckets=vocabulary_size)
    shared_embedding_columns = fc.shared_embedding_columns(
        [categorical_column_a, categorical_column_b], dimension=2)

    sequence_length_a = shared_embedding_columns[0]._get_sequence_dense_tensor(
        _LazyBuilder({
            'aaa': sparse_input_a
        }))[1]
    sequence_length_b = shared_embedding_columns[1]._get_sequence_dense_tensor(
        _LazyBuilder({
            'bbb': sparse_input_b
        }))[1]

    with monitored_session.MonitoredSession() as sess:
      sequence_length_a = sess.run(sequence_length_a)
      self.assertAllEqual(expected_sequence_length_a, sequence_length_a)
      self.assertEqual(np.int64, sequence_length_a.dtype)
      sequence_length_b = sess.run(sequence_length_b)
      self.assertAllEqual(expected_sequence_length_b, sequence_length_b)
      self.assertEqual(np.int64, sequence_length_b.dtype)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:41,代码来源:sequence_feature_column_test.py


示例5: test_sequence_length_with_zeros

  def test_sequence_length_with_zeros(self):
    column = sfc.sequence_categorical_column_with_identity(
        'aaa', num_buckets=3)
    inputs = sparse_tensor.SparseTensorValue(
        indices=((1, 0), (3, 0), (3, 1)),
        values=(1, 2, 0),
        dense_shape=(5, 2))
    expected_sequence_length = [0, 1, 0, 2, 0]

    sequence_length = column._sequence_length(_LazyBuilder({'aaa': inputs}))

    with monitored_session.MonitoredSession() as sess:
      self.assertAllEqual(
          expected_sequence_length, sequence_length.eval(session=sess))
开发者ID:DILASSS,项目名称:tensorflow,代码行数:14,代码来源:sequence_feature_column_test.py


示例6: test_sequence_length

  def test_sequence_length(self):
    column = sfc.sequence_categorical_column_with_identity(
        'aaa', num_buckets=3)
    inputs = sparse_tensor.SparseTensorValue(
        indices=((0, 0), (1, 0), (1, 1)),
        values=(1, 2, 0),
        dense_shape=(2, 2))
    expected_sequence_length = [1, 2]

    sequence_length = column._sequence_length(_LazyBuilder({'aaa': inputs}))

    with monitored_session.MonitoredSession() as sess:
      sequence_length = sess.run(sequence_length)
      self.assertAllEqual(expected_sequence_length, sequence_length)
      self.assertEqual(np.int64, sequence_length.dtype)
开发者ID:DILASSS,项目名称:tensorflow,代码行数:15,代码来源:sequence_feature_column_test.py


示例7: _build_feature_columns

  def _build_feature_columns(self):
    col = fc.categorical_column_with_identity(
        'int_ctx', num_buckets=100)
    ctx_cols = [
        fc.embedding_column(col, dimension=10),
        fc.numeric_column('float_ctx')]

    identity_col = sfc.sequence_categorical_column_with_identity(
        'int_list', num_buckets=10)
    bucket_col = sfc.sequence_categorical_column_with_hash_bucket(
        'bytes_list', hash_bucket_size=100)
    seq_cols = [
        fc.embedding_column(identity_col, dimension=10),
        fc.embedding_column(bucket_col, dimension=20)]

    return ctx_cols, seq_cols
开发者ID:ThunderQi,项目名称:tensorflow,代码行数:16,代码来源:sequence_feature_column_integration_test.py


示例8: test_get_sparse_tensors_inputs3d

  def test_get_sparse_tensors_inputs3d(self):
    """Tests _get_sparse_tensors when the input is already 3D Tensor."""
    column = sfc.sequence_categorical_column_with_identity(
        'aaa', num_buckets=3)
    inputs = sparse_tensor.SparseTensorValue(
        indices=((0, 0, 0), (1, 0, 0), (1, 1, 0)),
        values=(1, 2, 0),
        dense_shape=(2, 2, 1))

    with self.assertRaisesRegexp(
        errors.InvalidArgumentError,
        r'Column aaa expected ID tensor of rank 2\.\s*'
        r'id_tensor shape:\s*\[2 2 1\]'):
      id_weight_pair = column._get_sparse_tensors(
          _LazyBuilder({'aaa': inputs}))
      with monitored_session.MonitoredSession() as sess:
        id_weight_pair.id_tensor.eval(session=sess)
开发者ID:AnishShah,项目名称:tensorflow,代码行数:17,代码来源:sequence_feature_column_test.py


示例9: test_get_sparse_tensors

  def test_get_sparse_tensors(self):
    column = sfc.sequence_categorical_column_with_identity(
        'aaa', num_buckets=3)
    inputs = sparse_tensor.SparseTensorValue(
        indices=((0, 0), (1, 0), (1, 1)),
        values=(1, 2, 0),
        dense_shape=(2, 2))
    expected_sparse_ids = sparse_tensor.SparseTensorValue(
        indices=((0, 0, 0), (1, 0, 0), (1, 1, 0)),
        values=np.array((1, 2, 0), dtype=np.int64),
        dense_shape=(2, 2, 1))

    id_weight_pair = column._get_sparse_tensors(_LazyBuilder({'aaa': inputs}))

    self.assertIsNone(id_weight_pair.weight_tensor)
    with monitored_session.MonitoredSession() as sess:
      _assert_sparse_tensor_value(
          self,
          expected_sparse_ids,
          id_weight_pair.id_tensor.eval(session=sess))
开发者ID:AnishShah,项目名称:tensorflow,代码行数:20,代码来源:sequence_feature_column_test.py


示例10: testMultiExamplesMultiFeatures

  def testMultiExamplesMultiFeatures(self):
    """Tests examples with multiple sequential feature columns.

    Intermediate values are rounded for ease in reading.
    input_layer = [[[1, 0, 10], [0, 1, 5]], [[1, 0, 2], [0, 0, 0]]]
    initial_state = [[0, 0], [0, 0]]
    rnn_output_timestep_1 = [[tanh(.5*1 + 1*0 + .1*10 + .2*0 + .3*0 +.2),
                              tanh(-.5*1 - 1*0 - .2*10 - .3*0 - .4*0 +.5)],
                             [tanh(.5*1 + 1*0 + .1*2 + .2*0 + .3*0 +.2),
                              tanh(-.5*1 - 1*0 - .2*2 - .3*0 - .4*0 +.5)]]
                          = [[0.94, -0.96], [0.72, -0.38]]
    rnn_output_timestep_2 = [[tanh(.5*0 + 1*1 + .1*5 + .2*.94 - .3*.96 +.2),
                              tanh(-.5*0 - 1*1 - .2*5 - .3*.94 + .4*.96 +.5)],
                             [<ignored-padding>]]
                          = [[0.92, -0.88], [<ignored-padding>]]
    logits = [[-1*0.92 - 1*0.88 + 0.3],
              [-1*0.72 - 1*0.38 + 0.3]]
           = [[-1.5056], [-0.7962]]
    """
    base_global_step = 100
    create_checkpoint(
        # FeatureColumns are sorted alphabetically, so on_sale weights are
        # inserted before price.
        rnn_weights=[[.5, -.5], [1., -1.], [.1, -.2], [.2, -.3], [.3, -.4]],
        rnn_biases=[.2, .5],
        logits_weights=[[-1.], [1.]],
        logits_biases=[0.3],
        global_step=base_global_step,
        model_dir=self._model_dir)

    def features_fn():
      return {
          'price':
              sparse_tensor.SparseTensor(
                  values=[10., 5., 2.],
                  indices=[[0, 0], [0, 1], [1, 0]],
                  dense_shape=[2, 2]),
          'on_sale':
              sparse_tensor.SparseTensor(
                  values=[0, 1, 0],
                  indices=[[0, 0], [0, 1], [1, 0]],
                  dense_shape=[2, 2]),
      }

    price_column = seq_fc.sequence_numeric_column('price', shape=(1,))
    on_sale_column = fc.indicator_column(
        seq_fc.sequence_categorical_column_with_identity(
            'on_sale', num_buckets=2))
    sequence_feature_columns = [price_column, on_sale_column]
    context_feature_columns = []

    for mode in [
        model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL,
        model_fn.ModeKeys.PREDICT
    ]:
      self._test_logits(
          mode,
          rnn_units=[2],
          logits_dimension=1,
          features_fn=features_fn,
          sequence_feature_columns=sequence_feature_columns,
          context_feature_columns=context_feature_columns,
          expected_logits=[[-1.5056], [-0.7962]])
开发者ID:ThunderQi,项目名称:tensorflow,代码行数:63,代码来源:rnn_test.py


示例11: test_embedding_column

  def test_embedding_column(self):
    vocabulary_size = 3
    sparse_input_a = sparse_tensor.SparseTensorValue(
        # example 0, ids [2]
        # example 1, ids [0, 1]
        indices=((0, 0), (1, 0), (1, 1)),
        values=(2, 0, 1),
        dense_shape=(2, 2))
    sparse_input_b = sparse_tensor.SparseTensorValue(
        # example 0, ids [1]
        # example 1, ids [2, 0]
        indices=((0, 0), (1, 0), (1, 1)),
        values=(1, 2, 0),
        dense_shape=(2, 2))

    embedding_dimension_a = 2
    embedding_values_a = (
        (1., 2.),  # id 0
        (3., 4.),  # id 1
        (5., 6.)  # id 2
    )
    embedding_dimension_b = 3
    embedding_values_b = (
        (11., 12., 13.),  # id 0
        (14., 15., 16.),  # id 1
        (17., 18., 19.)  # id 2
    )
    def _get_initializer(embedding_dimension, embedding_values):
      def _initializer(shape, dtype, partition_info):
        self.assertAllEqual((vocabulary_size, embedding_dimension), shape)
        self.assertEqual(dtypes.float32, dtype)
        self.assertIsNone(partition_info)
        return embedding_values
      return _initializer

    expected_input_layer = [
        # example 0, ids_a [2], ids_b [1]
        [[5., 6., 14., 15., 16.], [0., 0., 0., 0., 0.]],
        # example 1, ids_a [0, 1], ids_b [2, 0]
        [[1., 2., 17., 18., 19.], [3., 4., 11., 12., 13.]],
    ]
    expected_sequence_length = [1, 2]

    categorical_column_a = sfc.sequence_categorical_column_with_identity(
        key='aaa', num_buckets=vocabulary_size)
    embedding_column_a = fc.embedding_column(
        categorical_column_a, dimension=embedding_dimension_a,
        initializer=_get_initializer(embedding_dimension_a, embedding_values_a))
    categorical_column_b = sfc.sequence_categorical_column_with_identity(
        key='bbb', num_buckets=vocabulary_size)
    embedding_column_b = fc.embedding_column(
        categorical_column_b, dimension=embedding_dimension_b,
        initializer=_get_initializer(embedding_dimension_b, embedding_values_b))

    input_layer, sequence_length = sfc.sequence_input_layer(
        features={
            'aaa': sparse_input_a,
            'bbb': sparse_input_b,
        },
        # Test that columns are reordered alphabetically.
        feature_columns=[embedding_column_b, embedding_column_a])

    global_vars = ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)
    self.assertItemsEqual(
        ('sequence_input_layer/aaa_embedding/embedding_weights:0',
         'sequence_input_layer/bbb_embedding/embedding_weights:0'),
        tuple([v.name for v in global_vars]))
    with monitored_session.MonitoredSession() as sess:
      self.assertAllEqual(embedding_values_a, global_vars[0].eval(session=sess))
      self.assertAllEqual(embedding_values_b, global_vars[1].eval(session=sess))
      self.assertAllEqual(expected_input_layer, input_layer.eval(session=sess))
      self.assertAllEqual(
          expected_sequence_length, sequence_length.eval(session=sess))
开发者ID:AnishShah,项目名称:tensorflow,代码行数:73,代码来源:sequence_feature_column_test.py



注:本文中的tensorflow.contrib.feature_column.python.feature_column.sequence_feature_column.sequence_categorical_column_with_identity函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python sequence_feature_column.sequence_numeric_column函数代码示例发布时间:2022-05-27
下一篇:
Python multi_head.multi_head函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap