• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python multi_head.multi_head函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.contrib.estimator.python.estimator.multi_head.multi_head函数的典型用法代码示例。如果您正苦于以下问题:Python multi_head函数的具体用法?Python multi_head怎么用?Python multi_head使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了multi_head函数的17个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_head_weights_wrong_size

 def test_head_weights_wrong_size(self):
   head1 = head_lib.multi_label_head(n_classes=2, name='head1')
   head2 = head_lib.multi_label_head(n_classes=3, name='head2')
   with self.assertRaisesRegexp(
       ValueError,
       r'heads and head_weights must have the same size\. '
       r'Given len\(heads\): 2. Given len\(head_weights\): 1\.'):
     multi_head_lib.multi_head([head1, head2], head_weights=[1.])
开发者ID:syed-ahmed,项目名称:tensorflow,代码行数:8,代码来源:multi_head_test.py


示例2: test_train_create_loss_logits_tensor_multi_dim

  def test_train_create_loss_logits_tensor_multi_dim(self):
    """Tests create_loss with multi-dimensional logits of shape [2, 2, 5]."""
    head1 = head_lib.regression_head(label_dimension=2, name='head1')
    head2 = head_lib.regression_head(label_dimension=3, name='head2')
    multi_head = multi_head_lib.multi_head([head1, head2])

    logits = np.array(
        [[[-1., 1., 2., -2., 2.], [-1., 1., 2., -2., 2.]],
         [[-1.5, 1.5, -2., 2., -2.], [-1.5, 1.5, -2., 2., -2.]]],
        dtype=np.float32)
    labels = {
        'head1': np.array([[[1., 0.], [1., 0.]],
                           [[1.5, 1.5], [1.5, 1.5]]], dtype=np.float32),
        'head2': np.array([[[0., 1., 0.], [0., 1., 0.]],
                           [[2., 2., 0.], [2., 2., 0.]]], dtype=np.float32),
    }
    # Loss for the first head:
    # loss1 = ((1+1)^2 + (0-1)^2 + (1+1)^2 + (0-1)^2 +
    #          (1.5+1.5)^2 + (1.5-1.5)^2 + (1.5+1.5)^2 + (1.5-1.5)^2) / 8
    #       = 3.5
    # Loss for the second head:
    # loss2 = ((0-2)^2 + (1+2)^2 + (0-2)^2 + (0-2)^2 + (1+2)^2 + (0-2)^2 +
    #          (2+2)^2 + (2-2)^2 + (0+2)^2 + (2+2)^2 + (2-2)^2 + (0+2)^2) / 12
    #       = 6.167
    expected_training_loss = 3.5 + 6.167

    training_loss = multi_head.create_loss(
        features={},
        mode=model_fn.ModeKeys.TRAIN,
        logits=logits,
        labels=labels)[0]
    tol = 1e-3
    with self.test_session():
      self.assertAllClose(
          expected_training_loss, training_loss.eval(), rtol=tol, atol=tol)
开发者ID:syed-ahmed,项目名称:tensorflow,代码行数:35,代码来源:multi_head_test.py


示例3: test_predict_two_heads_logits_tensor

  def test_predict_two_heads_logits_tensor(self):
    """Tests predict with logits as Tensor."""
    head1 = head_lib.multi_label_head(n_classes=2, name='head1')
    head2 = head_lib.multi_label_head(n_classes=3, name='head2')
    multi_head = multi_head_lib.multi_head([head1, head2])

    logits = np.array(
        [[-1., 1., 2., -2., 2.], [-1.5, 1., -3., 2., -2.]], dtype=np.float32)
    expected_logits1 = np.array([[-1., 1.], [-1.5, 1.]], dtype=np.float32)
    expected_logits2 = np.array([[2., -2., 2.], [-3., 2., -2.]],
                                dtype=np.float32)
    expected_probabilities = {
        'head1': _sigmoid(expected_logits1),
        'head2': _sigmoid(expected_logits2),
    }

    spec = multi_head.create_estimator_spec(
        features={'x': np.array(((42,),), dtype=np.int32)},
        mode=model_fn.ModeKeys.PREDICT,
        logits=logits)

    self.assertItemsEqual(
        (_DEFAULT_SERVING_KEY, 'predict', 'head1', 'classification/head1',
         'predict/head1', 'head2', 'classification/head2', 'predict/head2'),
        spec.export_outputs.keys())

    # Assert predictions and export_outputs.
    with self.test_session() as sess:
      _initialize_variables(self, spec.scaffold)
      self.assertIsNone(spec.scaffold.summary_op)
      predictions = sess.run(spec.predictions)
      self.assertAllClose(
          expected_logits1,
          predictions[('head1', prediction_keys.PredictionKeys.LOGITS)])
      self.assertAllClose(
          expected_logits2,
          predictions[('head2', prediction_keys.PredictionKeys.LOGITS)])
      self.assertAllClose(
          expected_probabilities['head1'],
          predictions[('head1', prediction_keys.PredictionKeys.PROBABILITIES)])
      self.assertAllClose(
          expected_probabilities['head2'],
          predictions[('head2', prediction_keys.PredictionKeys.PROBABILITIES)])

      self.assertAllClose(
          expected_probabilities['head1'],
          sess.run(spec.export_outputs[_DEFAULT_SERVING_KEY].scores))
      self.assertAllClose(
          expected_probabilities['head1'],
          sess.run(spec.export_outputs['head1'].scores))
      self.assertAllClose(
          expected_probabilities['head2'],
          sess.run(spec.export_outputs['head2'].scores))
开发者ID:syed-ahmed,项目名称:tensorflow,代码行数:53,代码来源:multi_head_test.py


示例4: test_predict_two_heads_logits_tensor_multi_dim

  def test_predict_two_heads_logits_tensor_multi_dim(self):
    """Tests predict with multi-dimensional logits of shape [2, 2, 5]."""
    head1 = head_lib.regression_head(label_dimension=2, name='head1')
    head2 = head_lib.regression_head(label_dimension=3, name='head2')
    multi_head = multi_head_lib.multi_head([head1, head2])

    logits = np.array(
        [[[-1., 1., 2., -2., 2.], [-1., 1., 2., -2., 2.]],
         [[-1.5, 1., -3., 2., -2.], [-1.5, 1., -3., 2., -2.]]],
        dtype=np.float32)
    expected_logits1 = np.array(
        [[[-1., 1.], [-1., 1.]],
         [[-1.5, 1.], [-1.5, 1.]]],
        dtype=np.float32)
    expected_logits2 = np.array(
        [[[2., -2., 2.], [2., -2., 2.]],
         [[-3., 2., -2.], [-3., 2., -2.]]],
        dtype=np.float32)

    spec = multi_head.create_estimator_spec(
        features={'x': np.array(((42,),), dtype=np.int32)},
        mode=model_fn.ModeKeys.PREDICT,
        logits=logits)

    self.assertItemsEqual(
        (_DEFAULT_SERVING_KEY, 'predict', 'head1', 'regression/head1',
         'predict/head1', 'head2', 'regression/head2', 'predict/head2'),
        spec.export_outputs.keys())

    # Assert predictions and export_outputs.
    with self.test_session() as sess:
      _initialize_variables(self, spec.scaffold)
      self.assertIsNone(spec.scaffold.summary_op)
      predictions = sess.run(spec.predictions)
      self.assertAllClose(
          expected_logits1,
          predictions[('head1', prediction_keys.PredictionKeys.PREDICTIONS)])
      self.assertAllClose(
          expected_logits2,
          predictions[('head2', prediction_keys.PredictionKeys.PREDICTIONS)])

      self.assertAllClose(
          expected_logits1,
          sess.run(spec.export_outputs[_DEFAULT_SERVING_KEY].value))
      self.assertAllClose(
          expected_logits1,
          sess.run(spec.export_outputs['head1'].value))
      self.assertAllClose(
          expected_logits2,
          sess.run(spec.export_outputs['head2'].value))
开发者ID:syed-ahmed,项目名称:tensorflow,代码行数:50,代码来源:multi_head_test.py


示例5: test_train_create_loss_two_heads_with_weights

  def test_train_create_loss_two_heads_with_weights(self):
    # Use different example weighting for each head weighting.
    weights1 = np.array([[1.], [2.]], dtype=np.float32)
    weights2 = np.array([[2.], [3.]])
    head1 = head_lib.multi_label_head(n_classes=2, name='head1',
                                      weight_column='weights1')
    head2 = head_lib.multi_label_head(n_classes=3, name='head2',
                                      weight_column='weights2')
    multi_head = multi_head_lib.multi_head(
        [head1, head2], head_weights=[1., 2.])

    logits = {
        'head1': np.array([[-10., 10.], [-15., 10.]], dtype=np.float32),
        'head2': np.array([[20., -20., 20.], [-30., 20., -20.]],
                          dtype=np.float32),
    }
    labels = {
        'head1': np.array([[1, 0], [1, 1]], dtype=np.int64),
        'head2': np.array([[0, 1, 0], [1, 1, 0]], dtype=np.int64),
    }
    training_loss, unreduced_losses, weights, _ = multi_head.create_loss(
        features={
            'x': np.array(((42,),), dtype=np.int32),
            'weights1': weights1,
            'weights2': weights2
        },
        mode=model_fn.ModeKeys.TRAIN,
        logits=logits,
        labels=labels)
    tol = 1e-3
    with self.test_session():
      # loss of the first head is [[(10 + 10) / 2], [(15 + 0) / 2]]
      # = [10, 7.5]
      # training_loss = (1 * 10 + 2 * 7.5) / 2 = 12.5
      # head-weighted unreduced_loss = 1 * [10, 7.5]
      self.assertAllClose(
          [[10.], [7.5]], unreduced_losses['head1'].eval(), rtol=tol, atol=tol)
      # loss of the second head is [[(20 + 20 + 20) / 3], [(30 + 0 + 0) / 3]]
      # = [20, 10]
      # training_loss = (2 * 20 + 3 * 10) / 2 = 35
      # head-weighted unreduced_loss = 2 * [20, 10]
      self.assertAllClose(
          [[40.], [20.]], unreduced_losses['head2'].eval(), rtol=tol, atol=tol)
      # head-weighted training_loss = 1 * 12.5 + 2 * 35 = 82.5
      self.assertAllClose(82.5, training_loss.eval(), rtol=tol, atol=tol)
      # head-weighted example weights
      self.assertAllClose(
          [[1.], [2.]], weights['head1'].eval(), rtol=tol, atol=tol)
      self.assertAllClose(
          [[4.], [6.]], weights['head2'].eval(), rtol=tol, atol=tol)
开发者ID:syed-ahmed,项目名称:tensorflow,代码行数:50,代码来源:multi_head_test.py


示例6: test_train_create_loss_one_head

  def test_train_create_loss_one_head(self):
    head1 = head_lib.multi_label_head(n_classes=2, name='head1')
    multi_head = multi_head_lib.multi_head([head1])

    logits = {'head1': np.array([[-10., 10.], [-15., 10.]], dtype=np.float32)}
    labels = {'head1': np.array([[1, 0], [1, 1]], dtype=np.int64)}
    with self.assertRaisesRegexp(
        NotImplementedError,
        r'create_loss not yet implemented for MultiHead\.'):
      multi_head.create_loss(
          features={'x': np.array(((42,),), dtype=np.int32)},
          mode=model_fn.ModeKeys.TRAIN,
          logits=logits,
          labels=labels)
开发者ID:Crazyonxh,项目名称:tensorflow,代码行数:14,代码来源:multi_head_test.py


示例7: test_train_one_head

  def test_train_one_head(self):
    head1 = head_lib.multi_label_head(n_classes=2, name='head1')
    multi_head = multi_head_lib.multi_head([head1])

    logits = {'head1': np.array([[-10., 10.], [-15., 10.]], dtype=np.float32)}
    labels = {'head1': np.array([[1, 0], [1, 1]], dtype=np.int64)}
    # For large logits, sigmoid cross entropy loss is approximated as:
    # loss = labels * (logits < 0) * (-logits) +
    #        (1 - labels) * (logits > 0) * logits =>
    # expected_unweighted_loss = [[10., 10.], [15., 0.]]
    # Average over classes, sum over weights.
    expected_loss = 17.5
    expected_train_result = 'my_train_op'
    def _train_op_fn(loss):
      return string_ops.string_join(
          [constant_op.constant(expected_train_result),
           string_ops.as_string(loss, precision=3)])

    spec = multi_head.create_estimator_spec(
        features={'x': np.array(((42,),), dtype=np.int32)},
        mode=model_fn.ModeKeys.TRAIN,
        logits=logits,
        labels=labels,
        train_op_fn=_train_op_fn)

    self.assertIsNotNone(spec.loss)
    self.assertEqual({}, spec.eval_metric_ops)
    self.assertIsNotNone(spec.train_op)
    self.assertIsNone(spec.export_outputs)
    _assert_no_hooks(self, spec)

    # Assert predictions, loss, train_op, and summaries.
    tol = 1e-3
    with self.test_session() as sess:
      _initialize_variables(self, spec.scaffold)
      self.assertIsNotNone(spec.scaffold.summary_op)
      loss, train_result, summary_str = sess.run((spec.loss, spec.train_op,
                                                  spec.scaffold.summary_op))
      self.assertAllClose(expected_loss, loss, rtol=tol, atol=tol)
      self.assertEqual(
          six.b('{0:s}{1:.3f}'.format(expected_train_result, expected_loss)),
          train_result)
      _assert_simple_summaries(self, {
          metric_keys.MetricKeys.LOSS: expected_loss,
          metric_keys.MetricKeys.LOSS + '/head1': expected_loss,
          # Average loss over examples.
          metric_keys.MetricKeys.LOSS_MEAN + '/head1': expected_loss / 2,
      }, summary_str, tol)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:48,代码来源:multi_head_test.py


示例8: test_train_create_loss_one_head

  def test_train_create_loss_one_head(self):
    head1 = head_lib.multi_label_head(n_classes=2, name='head1')
    multi_head = multi_head_lib.multi_head([head1])

    logits = {'head1': np.array([[-10., 10.], [-15., 10.]], dtype=np.float32)}
    labels = {'head1': np.array([[1, 0], [1, 1]], dtype=np.int64)}
    loss = multi_head.create_loss(
        features={'x': np.array(((42,),), dtype=np.int32)},
        mode=model_fn.ModeKeys.TRAIN,
        logits=logits,
        labels=labels)[0]
    tol = 1e-3
    with self.test_session():
      # Unreduced loss of the head is [[(10 + 10) / 2], (15 + 0) / 2]
      # (averaged over classes, averaged over examples).
      self.assertAllClose(8.75, loss.eval(), rtol=tol, atol=tol)
开发者ID:syed-ahmed,项目名称:tensorflow,代码行数:16,代码来源:multi_head_test.py


示例9: test_train_create_loss_two_heads_with_weights

  def test_train_create_loss_two_heads_with_weights(self):
    # Use different example weighting for each head weighting.
    weights1 = np.array([[1.], [2.]], dtype=np.float32)
    weights2 = np.array([[2.], [3.]])
    head1 = head_lib.multi_label_head(n_classes=2, name='head1',
                                      weight_column='weights1')
    head2 = head_lib.multi_label_head(n_classes=3, name='head2',
                                      weight_column='weights2')
    multi_head = multi_head_lib.multi_head(
        [head1, head2], head_weights=[1., 2.])

    logits = {
        'head1': np.array([[-10., 10.], [-15., 10.]], dtype=np.float32),
        'head2': np.array([[20., -20., 20.], [-30., 20., -20.]],
                          dtype=np.float32),
    }
    labels = {
        'head1': np.array([[1, 0], [1, 1]], dtype=np.int64),
        'head2': np.array([[0, 1, 0], [1, 1, 0]], dtype=np.int64),
    }
    weighted_sum_loss, example_weight_sum, _ = multi_head.create_loss(
        features={
            'x': np.array(((42,),), dtype=np.int32),
            'weights1': weights1,
            'weights2': weights2
        },
        mode=model_fn.ModeKeys.TRAIN,
        logits=logits,
        labels=labels)
    tol = 1e-3
    with self.test_session():
      # loss of the first head is [[(10 + 10) / 2], [(15 + 0) / 2]]
      # = [10, 7.5]
      # weighted_sum_loss = 1 * 10 + 2 * 7.5 = 25
      # loss of the second head is [[(20 + 20 + 20) / 3], [(30 + 0 + 0) / 3]]
      # = [20, 10]
      # weighted_sum_loss = 2 * 20 + 3 * 10 = 70
      # head-weighted merge = 1 * 25 + 2 * 70 = 165
      self.assertAllClose(165, weighted_sum_loss.eval(), rtol=tol, atol=tol)
      # example_weight_sum = 1 * (1 + 2) + 2 * (2 + 3) = 13
      self.assertAllClose(13., example_weight_sum.eval(), rtol=tol, atol=tol)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:41,代码来源:multi_head_test.py


示例10: test_train_create_loss_two_heads_with_weights

  def test_train_create_loss_two_heads_with_weights(self):
    head1 = head_lib.multi_label_head(n_classes=2, name='head1')
    head2 = head_lib.multi_label_head(n_classes=3, name='head2')
    multi_head = multi_head_lib.multi_head(
        [head1, head2], head_weights=[1., 2.])

    logits = {
        'head1': np.array([[-10., 10.], [-15., 10.]], dtype=np.float32),
        'head2': np.array([[20., -20., 20.], [-30., 20., -20.]],
                          dtype=np.float32),
    }
    labels = {
        'head1': np.array([[1, 0], [1, 1]], dtype=np.int64),
        'head2': np.array([[0, 1, 0], [1, 1, 0]], dtype=np.int64),
    }
    with self.assertRaisesRegexp(
        NotImplementedError,
        r'create_loss not yet implemented for MultiHead\.'):
      multi_head.create_loss(
          features={'x': np.array(((42,),), dtype=np.int32)},
          mode=model_fn.ModeKeys.TRAIN,
          logits=logits,
          labels=labels)
开发者ID:Crazyonxh,项目名称:tensorflow,代码行数:23,代码来源:multi_head_test.py


示例11: test_train_one_head_with_optimizer

  def test_train_one_head_with_optimizer(self):
    head1 = head_lib.multi_label_head(n_classes=2, name='head1')
    multi_head = multi_head_lib.multi_head([head1])

    logits = {'head1': np.array([[-10., 10.], [-15., 10.]], dtype=np.float32)}
    labels = {'head1': np.array([[1, 0], [1, 1]], dtype=np.int64)}
    # For large logits, sigmoid cross entropy loss is approximated as:
    # loss = labels * (logits < 0) * (-logits) +
    #        (1 - labels) * (logits > 0) * logits =>
    # expected_unweighted_loss = [[10., 10.], [15., 0.]]
    # loss = ( (10 + 10) / 2 + (15 + 0) / 2 ) / 2 = 8.75
    expected_loss = 8.75
    expected_train_result = 'my_train_op'

    class _Optimizer(object):

      def minimize(self, loss, global_step):
        del global_step
        return string_ops.string_join(
            [constant_op.constant(expected_train_result),
             string_ops.as_string(loss, precision=3)])

    spec = multi_head.create_estimator_spec(
        features={'x': np.array(((42,),), dtype=np.int32)},
        mode=model_fn.ModeKeys.TRAIN,
        logits=logits,
        labels=labels,
        optimizer=_Optimizer())

    tol = 1e-3
    with self.test_session() as sess:
      _initialize_variables(self, spec.scaffold)
      loss, train_result = sess.run((spec.loss, spec.train_op))
      self.assertAllClose(expected_loss, loss, rtol=tol, atol=tol)
      self.assertEqual(
          six.b('{0:s}{1:.3f}'.format(expected_train_result, expected_loss)),
          train_result)
开发者ID:syed-ahmed,项目名称:tensorflow,代码行数:37,代码来源:multi_head_test.py


示例12: test_eval_tpu

  def test_eval_tpu(self):
    head1 = head_lib.multi_label_head(n_classes=2, name='head1')
    head2 = head_lib.multi_label_head(n_classes=3, name='head2')
    multi_head = multi_head_lib.multi_head(
        [head1, head2], head_weights=[1., 2.])

    logits = {
        'head1': np.array([[-10., 10.], [-15., 10.]], dtype=np.float32),
        'head2': np.array([[20., -20., 20.], [-30., 20., -20.]],
                          dtype=np.float32),
    }
    labels = {
        'head1': np.array([[1, 0], [1, 1]], dtype=np.int64),
        'head2': np.array([[0, 1, 0], [1, 1, 0]], dtype=np.int64),
    }

    with self.assertRaisesRegexp(
        NotImplementedError,
        r'TPU evaluation is not implemented for multi_head\.'):
      multi_head._create_tpu_estimator_spec(
          features={'x': np.array(((42,),), dtype=np.int32)},
          mode=model_fn.ModeKeys.EVAL,
          logits=logits,
          labels=labels)
开发者ID:ThunderQi,项目名称:tensorflow,代码行数:24,代码来源:multi_head_test.py


示例13: test_eval_two_heads_with_weights

  def test_eval_two_heads_with_weights(self):
    head1 = head_lib.multi_label_head(n_classes=2, name='head1')
    head2 = head_lib.multi_label_head(n_classes=3, name='head2')
    multi_head = multi_head_lib.multi_head(
        [head1, head2], head_weights=[1., 2.])

    logits = {
        'head1': np.array([[-10., 10.], [-15., 10.]], dtype=np.float32),
        'head2': np.array([[20., -20., 20.], [-30., 20., -20.]],
                          dtype=np.float32),
    }
    labels = {
        'head1': np.array([[1, 0], [1, 1]], dtype=np.int64),
        'head2': np.array([[0, 1, 0], [1, 1, 0]], dtype=np.int64),
    }
    # For large logits, sigmoid cross entropy loss is approximated as:
    # loss = labels * (logits < 0) * (-logits) +
    #        (1 - labels) * (logits > 0) * logits =>
    # head1: expected_unweighted_loss = [[10., 10.], [15., 0.]]
    # loss = ( (10 + 10) / 2 + (15 + 0) / 2 ) / 2 = 8.75
    # head2: expected_unweighted_loss = [[20., 20., 20.], [30., 0., 0]]
    # loss = ( (20 + 20 + 20) / 3 + (30 + 0 + 0) / 3 ) / 2 = 15
    expected_loss_head1 = 8.75
    expected_loss_head2 = 15.
    expected_loss = 1. * expected_loss_head1 + 2. * expected_loss_head2

    spec = multi_head.create_estimator_spec(
        features={'x': np.array(((42,),), dtype=np.int32)},
        mode=model_fn.ModeKeys.EVAL,
        logits=logits,
        labels=labels)

    keys = metric_keys.MetricKeys
    expected_metrics = {
        keys.LOSS + '/head1': expected_loss_head1,
        keys.LOSS + '/head2': expected_loss_head2,
        # Average loss over examples.
        keys.LOSS_MEAN + '/head1': expected_loss_head1,
        keys.LOSS_MEAN + '/head2': expected_loss_head2,
        # auc and auc_pr cannot be reliably calculated for only 4-6 samples, but
        # this assert tests that the algorithm remains consistent.
        keys.AUC + '/head1': 0.1667,
        keys.AUC + '/head2': 0.3333,
        keys.AUC_PR + '/head1': 0.6667,
        keys.AUC_PR + '/head2': 0.5000,
    }

    # Assert spec contains expected tensors.
    self.assertIsNotNone(spec.loss)
    self.assertItemsEqual(expected_metrics.keys(), spec.eval_metric_ops.keys())
    self.assertIsNone(spec.train_op)
    self.assertIsNone(spec.export_outputs)
    _assert_no_hooks(self, spec)

    # Assert predictions, loss, and metrics.
    tol = 1e-3
    with self.test_session() as sess:
      _initialize_variables(self, spec.scaffold)
      self.assertIsNone(spec.scaffold.summary_op)
      value_ops = {k: spec.eval_metric_ops[k][0] for k in spec.eval_metric_ops}
      update_ops = {k: spec.eval_metric_ops[k][1] for k in spec.eval_metric_ops}
      loss, metrics = sess.run((spec.loss, update_ops))
      self.assertAllClose(expected_loss, loss, rtol=tol, atol=tol)
      # Check results of both update (in `metrics`) and value ops.
      self.assertAllClose(expected_metrics, metrics, rtol=tol, atol=tol)
      self.assertAllClose(
          expected_metrics, {k: value_ops[k].eval() for k in value_ops},
          rtol=tol,
          atol=tol)
开发者ID:syed-ahmed,项目名称:tensorflow,代码行数:69,代码来源:multi_head_test.py


示例14: test_head_name_missing

 def test_head_name_missing(self):
   head1 = head_lib.multi_label_head(n_classes=2, name='head1')
   head2 = head_lib.multi_label_head(n_classes=3)
   with self.assertRaisesRegexp(
       ValueError, r'All given heads must have name specified\.'):
     multi_head_lib.multi_head([head1, head2])
开发者ID:syed-ahmed,项目名称:tensorflow,代码行数:6,代码来源:multi_head_test.py


示例15: test_no_heads

 def test_no_heads(self):
   with self.assertRaisesRegexp(
       ValueError, r'Must specify heads\. Given: \[\]'):
     multi_head_lib.multi_head(heads=[])
开发者ID:syed-ahmed,项目名称:tensorflow,代码行数:4,代码来源:multi_head_test.py


示例16: test_train_two_heads_with_weights

  def test_train_two_heads_with_weights(self):
    head1 = head_lib.multi_label_head(n_classes=2, name='head1')
    head2 = head_lib.multi_label_head(n_classes=3, name='head2')
    multi_head = multi_head_lib.multi_head(
        [head1, head2], head_weights=[1., 2.])

    logits = {
        'head1': np.array([[-10., 10.], [-15., 10.]], dtype=np.float32),
        'head2': np.array([[20., -20., 20.], [-30., 20., -20.]],
                          dtype=np.float32),
    }
    labels = {
        'head1': np.array([[1, 0], [1, 1]], dtype=np.int64),
        'head2': np.array([[0, 1, 0], [1, 1, 0]], dtype=np.int64),
    }
    # For large logits, sigmoid cross entropy loss is approximated as:
    # loss = labels * (logits < 0) * (-logits) +
    #        (1 - labels) * (logits > 0) * logits =>
    # head1: expected_unweighted_loss = [[10., 10.], [15., 0.]]
    # loss = ( (10 + 10) / 2 + (15 + 0) / 2 ) / 2 = 8.75
    # head2: expected_unweighted_loss = [[20., 20., 20.], [30., 0., 0]]
    # loss = ( (20 + 20 + 20) / 3 + (30 + 0 + 0) / 3 ) / 2 = 15
    # Average over classes, weighted sum over batch and heads.
    expected_loss_head1 = 8.75
    expected_loss_head2 = 15.0
    expected_loss = 1. * expected_loss_head1 + 2. * expected_loss_head2
    expected_train_result = 'my_train_op'
    def _train_op_fn(loss):
      return string_ops.string_join(
          [constant_op.constant(expected_train_result),
           string_ops.as_string(loss, precision=3)])

    spec = multi_head.create_estimator_spec(
        features={'x': np.array(((42,),), dtype=np.int32)},
        mode=model_fn.ModeKeys.TRAIN,
        logits=logits,
        labels=labels,
        train_op_fn=_train_op_fn)

    self.assertIsNotNone(spec.loss)
    self.assertEqual({}, spec.eval_metric_ops)
    self.assertIsNotNone(spec.train_op)
    self.assertIsNone(spec.export_outputs)
    _assert_no_hooks(self, spec)

    # Assert predictions, loss, train_op, and summaries.
    tol = 1e-3
    with self.test_session() as sess:
      _initialize_variables(self, spec.scaffold)
      self.assertIsNotNone(spec.scaffold.summary_op)
      loss, train_result, summary_str = sess.run((spec.loss, spec.train_op,
                                                  spec.scaffold.summary_op))
      self.assertAllClose(expected_loss, loss, rtol=tol, atol=tol)
      self.assertEqual(
          six.b('{0:s}{1:.3f}'.format(expected_train_result, expected_loss)),
          train_result)
      _assert_simple_summaries(self, {
          metric_keys.MetricKeys.LOSS: expected_loss,
          metric_keys.MetricKeys.LOSS + '/head1': expected_loss_head1,
          metric_keys.MetricKeys.LOSS + '/head2': expected_loss_head2,
      }, summary_str, tol)
开发者ID:syed-ahmed,项目名称:tensorflow,代码行数:61,代码来源:multi_head_test.py


示例17: test_name

 def test_name(self):
   head1 = head_lib.multi_label_head(n_classes=2, name='head1')
   head2 = head_lib.multi_label_head(n_classes=3, name='head2')
   multi_head = multi_head_lib.multi_head([head1, head2])
   self.assertEqual('head1_head2', multi_head.name)
开发者ID:syed-ahmed,项目名称:tensorflow,代码行数:5,代码来源:multi_head_test.py



注:本文中的tensorflow.contrib.estimator.python.estimator.multi_head.multi_head函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap