• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow.slice函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.slice函数的典型用法代码示例。如果您正苦于以下问题:Python slice函数的具体用法?Python slice怎么用?Python slice使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了slice函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: read_record

def read_record(filename_queue):
    class FCNRecord(object):
        pass
    result = FCNRecord()
    result.mask_height = int(420/DOWNSAMPLE_FACTOR)
    result.mask_width = int(580/DOWNSAMPLE_FACTOR)
    result.mask_depth = 1
    result.img_depth = 1
    img_len = result.mask_height*result.mask_width*result.img_depth
    mask_len = result.mask_height*result.mask_width*result.mask_depth
    record_len = img_len + mask_len

    reader = tf.FixedLengthRecordReader(record_bytes=record_len)
    result.key, value = reader.read(filename_queue)
    record_bytes = tf.decode_raw(value, tf.uint8)
    #print(record_bytes.get_shape())
    int_image = tf.reshape(tf.slice(record_bytes, [0], [img_len]),[result.mask_height, result.mask_width])
    rgb_image = tf.pack([int_image,int_image,int_image])
    rgb_img = tf.transpose(rgb_image,(1,2,0))
    result.image = tf.cast(rgb_img,tf.float32)
    bool_mask = tf.cast( tf.reshape(tf.slice(record_bytes, [img_len], [mask_len]),[result.mask_height, result.mask_width]), tf.bool)
    hot_mask= tf.pack( [bool_mask, tf.logical_not(bool_mask)])
    h_mask = tf.transpose(hot_mask,(1,2,0))
    result.mask = tf.cast(h_mask, tf.float32)
    return result
开发者ID:vassiliou,项目名称:unstoo,代码行数:25,代码来源:aws_fcn_input.py


示例2: knn_point

def knn_point(k, xyz1, xyz2):
    '''
    Input:
        k: int32, number of k in k-nn search
        xyz1: (batch_size, ndataset, c) float32 array, input points
        xyz2: (batch_size, npoint, c) float32 array, query points
    Output:
        val: (batch_size, npoint, k) float32 array, L2 distances
        idx: (batch_size, npoint, k) int32 array, indices to input points
    '''
    b = xyz1.get_shape()[0].value
    n = xyz1.get_shape()[1].value
    c = xyz1.get_shape()[2].value
    m = xyz2.get_shape()[1].value
    print b, n, c, m
    print xyz1, (b,1,n,c)
    xyz1 = tf.tile(tf.reshape(xyz1, (b,1,n,c)), [1,m,1,1])
    xyz2 = tf.tile(tf.reshape(xyz2, (b,m,1,c)), [1,1,n,1])
    dist = tf.reduce_sum((xyz1-xyz2)**2, -1)
    print dist, k
    outi, out = select_top_k(k, dist)
    idx = tf.slice(outi, [0,0,0], [-1,-1,k])
    val = tf.slice(out, [0,0,0], [-1,-1,k])
    print idx, val
    #val, idx = tf.nn.top_k(-dist, k=k) # ONLY SUPPORT CPU
    return val, idx
开发者ID:joosm,项目名称:pointnet2,代码行数:26,代码来源:tf_grouping.py


示例3: BatchClipByL2norm

def BatchClipByL2norm(t, upper_bound, name=None):
  """Clip an array of tensors by L2 norm.

  Shrink each dimension-0 slice of tensor (for matrix it is each row) such
  that the l2 norm is at most upper_bound. Here we clip each row as it
  corresponds to each example in the batch.

  Args:
    t: the input tensor.
    upper_bound: the upperbound of the L2 norm.
    name: optional name.
  Returns:
    the clipped tensor.
  """

  assert upper_bound > 0
  with tf.op_scope([t, upper_bound], name, "batch_clip_by_l2norm") as name:
    saved_shape = tf.shape(t)
    batch_size = tf.slice(saved_shape, [0], [1])
    t2 = tf.reshape(t, tf.concat(0, [batch_size, [-1]]))
    upper_bound_inv = tf.fill(tf.slice(saved_shape, [0], [1]),
                              tf.constant(1.0/upper_bound))
    # Add a small number to avoid divide by 0
    l2norm_inv = tf.rsqrt(tf.reduce_sum(t2 * t2, [1]) + 0.000001)
    scale = tf.minimum(l2norm_inv, upper_bound_inv) * upper_bound
    clipped_t = tf.matmul(tf.diag(scale), t2)
    clipped_t = tf.reshape(clipped_t, saved_shape, name=name)
  return clipped_t
开发者ID:Peratham,项目名称:models,代码行数:28,代码来源:utils.py


示例4: forward

    def forward(self, state, autoencoder):
        '''
        state: vector
        '''

        if autoencoder is None:
            _input = state
        else:
            _input, _ = autoencoder.forward(state)

        state_ = _input
        # clip observation variables from full state
        x_H_ = tf.slice(state_, [0, 0], [-1, 6])
        v_ct = tf.slice(state_, [0, 1], [-1, 1]) - tf.slice(state_, [0, 3], [-1, 1])
        # x_H_ = tf.concat(concat_dim=1, values=[x_H_, v_ct])

        h0 = tf.nn.xw_plus_b(x_H_, self.weights['0'], self.biases['0'], name='h0')
        relu0 = tf.nn.relu(h0)

        h1 = tf.nn.xw_plus_b(relu0, self.weights['1'], self.biases['1'], name='h1')
        relu1 = tf.nn.relu(h1)

        relu1_do = tf.nn.dropout(relu1, self.arch_params['do_keep_prob'])

        a = tf.nn.xw_plus_b(relu1_do, self.weights['c'], self.biases['c'], name='a')

        return a
开发者ID:bentzinir,项目名称:Buffe,代码行数:27,代码来源:policy.py


示例5: diff

def diff(x, axis=-1):
  """Take the finite difference of a tensor along an axis.

  Args:
    x: Input tensor of any dimension.
    axis: Axis on which to take the finite difference.

  Returns:
    d: Tensor with size less than x by 1 along the difference dimension.

  Raises:
    ValueError: Axis out of range for tensor.
  """
  shape = x.get_shape()
  if axis >= len(shape):
    raise ValueError('Invalid axis index: %d for tensor with only %d axes.' %
                     (axis, len(shape)))

  begin_back = [0 for unused_s in range(len(shape))]
  begin_front = [0 for unused_s in range(len(shape))]
  begin_front[axis] = 1

  size = shape.as_list()
  size[axis] -= 1
  slice_front = tf.slice(x, begin_front, size)
  slice_back = tf.slice(x, begin_back, size)
  d = slice_front - slice_back
  return d
开发者ID:cghawthorne,项目名称:magenta,代码行数:28,代码来源:spectral_ops.py


示例6: input_fn

 def input_fn():
     random_sequence = tf.random_uniform([batch_size, sequence_length + 1], 0, 2, dtype=tf.int32, seed=seed)
     labels = tf.slice(random_sequence, [0, 0], [batch_size, sequence_length])
     inputs = tf.expand_dims(
         tf.to_float(tf.slice(random_sequence, [0, 1], [batch_size, sequence_length])), 2
     )
     return {"inputs": inputs}, labels
开发者ID:pronobis,项目名称:tensorflow,代码行数:7,代码来源:dynamic_rnn_estimator_test.py


示例7: get_image

def get_image(filename_queue):
  #CIFAR10Record is a 'C struct' bundling tensorflow input data
  class CIFAR10Record(object):
    pass
  #
  result = CIFAR10Record()
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 32
  result.width = 32
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
  result.key, value = reader.read(filename_queue)

  # Convert from a string to a vector of uint8 that is record_bytes long.
  record_bytes = tf.decode_raw(value, tf.uint8)

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(
      tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

  # The remaining bytes after the label represent the image, which we reshape
  # from [depth * height * width] to [depth, height, width].
  depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                           [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image = tf.transpose(depth_major, [1, 2, 0])
  return result
开发者ID:kingtaurus,项目名称:cs231n,代码行数:35,代码来源:cifar10_tensorflow_batch_queue.py


示例8: get_model

def get_model(point_cloud, is_training, bn_decay=None):
    """ Part segmentation PointNet, input is BxNx6 (XYZ NormalX NormalY NormalZ), output Bx50 """
    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}
    l0_xyz = tf.slice(point_cloud, [0,0,0], [-1,-1,3])
    l0_points = tf.slice(point_cloud, [0,0,3], [-1,-1,3])

    # Set Abstraction layers
    l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=512, radius=0.2, nsample=64, mlp=[64,64,128], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer1')
    l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=128, radius=0.4, nsample=64, mlp=[128,128,256], mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay, scope='layer2')
    l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=None, radius=None, nsample=None, mlp=[256,512,1024], mlp2=None, group_all=True, is_training=is_training, bn_decay=bn_decay, scope='layer3')

    # Feature Propagation layers
    l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [256,256], is_training, bn_decay, scope='fa_layer1')
    l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256,128], is_training, bn_decay, scope='fa_layer2')
    l0_points = pointnet_fp_module(l0_xyz, l1_xyz, tf.concat([l0_xyz,l0_points],axis=-1), l1_points, [128,128,128], is_training, bn_decay, scope='fa_layer3')

    # FC layers
    net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay)
    end_points['feats'] = net 
    net = tf_util.dropout(net, keep_prob=0.5, is_training=is_training, scope='dp1')
    net = tf_util.conv1d(net, 50, 1, padding='VALID', activation_fn=None, scope='fc2')

    return net, end_points
开发者ID:joosm,项目名称:pointnet2,代码行数:25,代码来源:pointnet2_part_seg.py


示例9: tf_format_mnist_images

def tf_format_mnist_images(X, Y, Y_, n=100, lines=10):
    correct_prediction = tf.equal(tf.argmax(Y,1), tf.argmax(Y_,1))
    correctly_recognised_indices = tf.squeeze(tf.where(correct_prediction), [1])  # indices of correctly recognised images
    incorrectly_recognised_indices = tf.squeeze(tf.where(tf.logical_not(correct_prediction)), [1]) # indices of incorrectly recognised images
    everything_incorrect_first = tf.concat([incorrectly_recognised_indices, correctly_recognised_indices], 0) # images reordered with indeces of unrecognised images first
    everything_incorrect_first = tf.slice(everything_incorrect_first, [0], [n]) # compute first 100 only - no space to display more anyway
    # compute n=100 digits to display only
    Xs = tf.gather(X, everything_incorrect_first)
    Ys = tf.gather(Y, everything_incorrect_first)
    Ys_ = tf.gather(Y_, everything_incorrect_first)
    correct_prediction_s = tf.gather(correct_prediction, everything_incorrect_first)

    digits_left = tf.image.grayscale_to_rgb(tensorflowvisu_digits.digits_left())
    correct_tags = tf.gather(digits_left, tf.argmax(Ys_, 1)) # correct digits to be printed on the images
    digits_right = tf.image.grayscale_to_rgb(tensorflowvisu_digits.digits_right())
    computed_tags = tf.gather(digits_right, tf.argmax(Ys, 1)) # computed digits to be printed on the images
    #superimposed_digits = correct_tags+computed_tags
    superimposed_digits = tf.where(correct_prediction_s, tf.zeros_like(correct_tags),correct_tags+computed_tags) # only pring the correct and computed digits on unrecognised images
    correct_bkg   = tf.reshape(tf.tile([1.3,1.3,1.3], [28*28]), [1, 28,28,3]) # white background
    incorrect_bkg = tf.reshape(tf.tile([1.3,1.0,1.0], [28*28]), [1, 28,28,3]) # red background
    recognised_bkg = tf.gather(tf.concat([incorrect_bkg, correct_bkg], 0), tf.cast(correct_prediction_s, tf.int32)) # pick either the red or the white background depending on recognised status

    I = tf.image.grayscale_to_rgb(Xs)
    I = ((1-(I+superimposed_digits))*recognised_bkg)/1.3 # stencil extra data on top of images and reorder them unrecognised first
    I = tf.image.convert_image_dtype(I, tf.uint8, saturate=True)
    Islices = [] # 100 images => 10x10 image block
    for imslice in range(lines):
        Islices.append(tf.concat(tf.unstack(tf.slice(I, [imslice*n//lines,0,0,0], [n//lines,28,28,3])), 1))
    I = tf.concat(Islices, 0)
    return I
开发者ID:Spandyie,项目名称:tensorflow-mnist-tutorial,代码行数:30,代码来源:tensorflowvisu.py


示例10: read_cifar10

def read_cifar10(filename_queue):
    result = CIFAR10Record()
    label_bytes = 1 # 2 for CIFAR-100
    result.height = 32
    result.width = 32
    result.depth = 3
    image_bytes = result.height * result.width * result.depth
    record_bytes = label_bytes + image_bytes
    
    # 固定長データのReader
    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    result.key, value = reader.read(filename_queue)

    # valueをdecode_rowでデコード
    record_bytes = tf.decode_raw(value, tf.uint8)

    # labelデータ(最初の1byteをスライス)
    result.label = tf.cast(tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

    # 画像データ
    depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]), [result.depth, result.height, result.width])

    # transposeで[1,2,0]の順に並べる
    result.unit8image = tf.transpose(depth_major, [1,2,0])

    return result
开发者ID:pmnyc,项目名称:Machine_Learning_Test_Repository,代码行数:26,代码来源:cifar10.py


示例11: make_input_output_histogramm

        def make_input_output_histogramm(inp, labels):
            x_slice = tf.slice(input_= inp, begin= [0,0], size= [-1,1])
            v_slice = tf.slice(input_= inp, begin= [0,1], size= [-1,1])

            tf.histogram_summary('x_input', x_slice)
            tf.histogram_summary('v_input', v_slice)
            tf.histogram_summary('labels hist', labels)
开发者ID:febert,项目名称:DeepRL,代码行数:7,代码来源:nn.py


示例12: compute_first_or_last

 def compute_first_or_last(self, select, first=True):
   #perform first ot last operation on row select with probabilistic row selection
   answer = tf.zeros_like(select)
   running_sum = tf.zeros([self.batch_size, 1], self.data_type)
   for i in range(self.max_elements):
     if (first):
       current = tf.slice(select, [0, i], [self.batch_size, 1])
     else:
       current = tf.slice(select, [0, self.max_elements - 1 - i],
                          [self.batch_size, 1])
     curr_prob = current * (1 - running_sum)
     curr_prob = curr_prob * tf.cast(curr_prob >= 0.0, self.data_type)
     running_sum += curr_prob
     temp_ans = []
     curr_prob = tf.expand_dims(tf.reshape(curr_prob, [self.batch_size]), 0)
     for i_ans in range(self.max_elements):
       if (not (first) and i_ans == self.max_elements - 1 - i):
         temp_ans.append(curr_prob)
       elif (first and i_ans == i):
         temp_ans.append(curr_prob)
       else:
         temp_ans.append(tf.zeros_like(curr_prob))
     temp_ans = tf.transpose(tf.concat(axis=0, values=temp_ans))
     answer += temp_ans
   return answer
开发者ID:Hukongtao,项目名称:models,代码行数:25,代码来源:model.py


示例13: __call__

	def __call__(self, inputs, state, scope=None):
		'''Runs vanilla LSTM Cell and applies zoneout.
		'''
		#Apply vanilla LSTM
		output, new_state = self._cell(inputs, state, scope)

		if self.state_is_tuple:
			(prev_c, prev_h) = state
			(new_c, new_h) = new_state
		else:
			num_proj = self._cell._num_units if self._cell._num_proj is None else self._cell._num_proj
			prev_c = tf.slice(state, [0, 0], [-1, self._cell._num_units])
			prev_h = tf.slice(state, [0, self._cell._num_units], [-1, num_proj])
			new_c = tf.slice(new_state, [0, 0], [-1, self._cell._num_units])
			new_h = tf.slice(new_state, [0, self._cell._num_units], [-1, num_proj])

		#Apply zoneout
		if self.is_training:
			#nn.dropout takes keep_prob (probability to keep activations) not drop_prob (probability to mask activations)!
			c = (1 - self._zoneout_cell) * tf.nn.dropout(new_c - prev_c, (1 - self._zoneout_cell)) + prev_c
			h = (1 - self._zoneout_outputs) * tf.nn.dropout(new_h - prev_h, (1 - self._zoneout_outputs)) + prev_h

		else:
			c = (1 - self._zoneout_cell) * new_c + self._zoneout_cell * prev_c
			h = (1 - self._zoneout_outputs) * new_h + self._zoneout_outputs * prev_h

		new_state = tf.nn.rnn_cell.LSTMStateTuple(c, h) if self.state_is_tuple else tf.concat(1, [c, h])

		return output, new_state
开发者ID:duvtedudug,项目名称:Tacotron-2,代码行数:29,代码来源:modules.py


示例14: _transform

    def _transform(theta, input_dim, out_size):
        num_batch = tf.shape(input=input_dim)[0]
        num_channels = tf.shape(input=input_dim)[3]
        theta = tf.reshape(theta, (-1, 2, 3))
        theta = tf.cast(theta, 'float32')

        # grid of (x_t, y_t, 1), eq (1) in ref [1]
        out_height = out_size[0]
        out_width = out_size[1]
        grid = _meshgrid(out_height, out_width)
        grid = tf.expand_dims(grid, 0)
        grid = tf.reshape(grid, [-1])
        grid = tf.tile(grid, tf.stack([num_batch]))
        grid = tf.reshape(grid, tf.stack([num_batch, 3, -1]))

        # Transform A x (x_t, y_t, 1)^T -> (x_s, y_s)
        T_g = tf.matmul(theta, grid)
        x_s = tf.slice(T_g, [0, 0, 0], [-1, 1, -1])
        y_s = tf.slice(T_g, [0, 1, 0], [-1, 1, -1])
        x_s_flat = tf.reshape(x_s, [-1])
        y_s_flat = tf.reshape(y_s, [-1])

        input_transformed = _interpolate(input_dim, x_s_flat, y_s_flat, out_size)

        output = tf.reshape(input_transformed, tf.stack([num_batch, out_height, out_width, num_channels]))
        return output
开发者ID:zsdonghao,项目名称:tensorlayer,代码行数:26,代码来源:spatial_transformer.py


示例15: read_cifar10

def read_cifar10(filename_queue):
    """Reads and parses examples from CIFAR10 data files.

    Recommendation: if you want N-way read parallelism, call this function
    N times.  This will give you N independent Readers reading different
    files & positions within those files, which will give better mixing of
    examples.

    Args:
      filename_queue: A queue of strings with the filenames to read from.

    Returns:
      An object representing a single example, with the following fields:
        height: number of rows in the result (32)
        width: number of columns in the result (32)
        depth: number of color channels in the result (3)
        key: a scalar string Tensor describing the filename & record number
          for this example.
        label: an int32 Tensor with the label in the range 0..9.
        uint8image: a [height, width, depth] uint8 Tensor with the image data
    """

    class CIFAR10Record(object):
        pass

    result = CIFAR10Record()

    # Dimensions of the images in the CIFAR-10 dataset.
    # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
    # input format.
    label_bytes = 1  # 2 for CIFAR-100
    result.height = 32
    result.width = 32
    result.depth = 3
    image_bytes = result.height * result.width * result.depth
    # Every record consists of a label followed by the image, with a
    # fixed number of bytes for each.
    record_bytes = label_bytes + image_bytes

    # Read a record, getting filenames from the filename_queue.  No
    # header or footer in the CIFAR-10 format, so we leave header_bytes
    # and footer_bytes at their default of 0.
    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    result.key, value = reader.read(filename_queue)

    # Convert from a string to a vector of uint8 that is record_bytes long.
    record_bytes = tf.decode_raw(value, tf.uint8)

    # The first bytes represent the label, which we convert from uint8->int32.
    result.label = tf.cast(
        tf.slice(record_bytes, [0], [label_bytes]), tf.int32)

    # The remaining bytes after the label represent the image, which we reshape
    # from [depth * height * width] to [depth, height, width].
    depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
                             [result.depth, result.height, result.width])
    # Convert from [depth, height, width] to [height, width, depth].
    result.uint8image = tf.transpose(depth_major, [1, 2, 0])

    return result
开发者ID:siavashkavousi,项目名称:ML,代码行数:60,代码来源:cifar10_input.py


示例16: process

def process(_, current):
    count = tf.cast(current[0], tf.int32)
    current = tf.slice(current, [1], [-1])
    max = tf.shape(current)[0]
    sm = tf.expand_dims(tf.slice(current, [max - count], [-1]), 0)
    sm = tf.nn.softmax(sm)
    return tf.concat(0, [tf.zeros([max-count]), tf.squeeze(sm, [0])])
开发者ID:hedgefair,项目名称:pycodesuggest,代码行数:7,代码来源:tfutils.py


示例17: read_cifar10

def read_cifar10(filename_queue):
    class CIFAR10Record(object):
        pass

    result = CIFAR10Record()

    label_bytes = 1
    result.height = 32
    result.width = 32
    result.depth = 3
    images_bytes = result.height * result.width * result.depth
    record_bytes = label_bytes + images_bytes
    print(record_bytes)

    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    result.key, value = reader.read(filename_queue)

    record = tf.decode_raw(value, tf.uint8)

    result.label = tf.cast(tf.slice(record, [0], [label_bytes]), tf.int32)

    depth_major = tf.reshape(
        tf.slice(record, [label_bytes], [images_bytes]), [result.depth, result.height, result.width]
    )
    result.uint8image = tf.transpose(depth_major, [1, 2, 0])

    return result
开发者ID:izeye,项目名称:samples-tensorflow,代码行数:27,代码来源:cifar10_input.py


示例18: ApplyPcaAndWhitening

def ApplyPcaAndWhitening(data,
                         pca_matrix,
                         pca_mean,
                         output_dim,
                         use_whitening=False,
                         pca_variances=None):
  """Applies PCA/whitening to data.

  Args:
    data: [N, dim] float tensor containing data which undergoes PCA/whitening.
    pca_matrix: [dim, dim] float tensor PCA matrix, row-major.
    pca_mean: [dim] float tensor, mean to subtract before projection.
    output_dim: Number of dimensions to use in output data, of type int.
    use_whitening: Whether whitening is to be used.
    pca_variances: [dim] float tensor containing PCA variances. Only used if
      use_whitening is True.

  Returns:
    output: [N, output_dim] float tensor with output of PCA/whitening operation.
  """
  output = tf.matmul(
      tf.subtract(data, pca_mean),
      tf.slice(pca_matrix, [0, 0], [output_dim, -1]),
      transpose_b=True,
      name='pca_matmul')

  # Apply whitening if desired.
  if use_whitening:
    output = tf.divide(
        output,
        tf.sqrt(tf.slice(pca_variances, [0], [output_dim])),
        name='whitening')

  return output
开发者ID:CoolSheng,项目名称:models,代码行数:34,代码来源:feature_extractor.py


示例19: read_cifar_files

def read_cifar_files(filename_queue, distort_images = True):
    reader = tf.FixedLengthRecordReader(record_bytes=record_length)
    key, record_string = reader.read(filename_queue)
    record_bytes = tf.decode_raw(record_string, tf.uint8)
    image_label = tf.cast(tf.slice(record_bytes, [0], [1]), tf.int32)
  
    # Extract image
    image_extracted = tf.reshape(tf.slice(record_bytes, [1], [image_vec_length]),
                                 [num_channels, image_height, image_width])
    
    # Reshape image
    image_uint8image = tf.transpose(image_extracted, [1, 2, 0])
    reshaped_image = tf.cast(image_uint8image, tf.float32)
    # Randomly Crop image
    final_image = tf.image.resize_image_with_crop_or_pad(reshaped_image, crop_width, crop_height)
    
    if distort_images:
        # Randomly flip the image horizontally, change the brightness and contrast
        final_image = tf.image.random_flip_left_right(final_image)
        final_image = tf.image.random_brightness(final_image,max_delta=63)
        final_image = tf.image.random_contrast(final_image,lower=0.2, upper=1.8)

    # Normalize whitening
    final_image = tf.image.per_image_standardization(final_image)
    return(final_image, image_label)
开发者ID:Bluebear171,项目名称:tensorflow_cookbook,代码行数:25,代码来源:03_cnn_cifar10.py


示例20: make_minibatch

    def make_minibatch(self, valid_anchors):
        with tf.variable_scope('rpn_minibatch'):

            # in labels(shape is [N, ]): 1 is positive, 0 is negative, -1 is ignored
            labels, anchor_matched_gtboxes, object_mask = \
                self.rpn_find_positive_negative_samples(valid_anchors)  # [num_of_valid_anchors, ]

            positive_indices = tf.reshape(tf.where(tf.equal(labels, 1.0)), [-1])  # use labels is same as object_mask

            num_of_positives = tf.minimum(tf.shape(positive_indices)[0],
                                          tf.cast(self.rpn_mini_batch_size * self.rpn_positives_ratio, tf.int32))

            # num of positives <= minibatch_size * 0.5
            positive_indices = tf.random_shuffle(positive_indices)
            positive_indices = tf.slice(positive_indices, begin=[0], size=[num_of_positives])
            # positive_anchors = tf.gather(self.anchors, positive_indices)

            negative_indices = tf.reshape(tf.where(tf.equal(labels, 0.0)), [-1])
            num_of_negatives = tf.minimum(self.rpn_mini_batch_size - num_of_positives,
                                          tf.shape(negative_indices)[0])

            negative_indices = tf.random_shuffle(negative_indices)
            negative_indices = tf.slice(negative_indices, begin=[0], size=[num_of_negatives])
            # negative_anchors = tf.gather(self.anchors, negative_indices)

            minibatch_indices = tf.concat([positive_indices, negative_indices], axis=0)
            minibatch_indices = tf.random_shuffle(minibatch_indices)

            minibatch_anchor_matched_gtboxes = tf.gather(anchor_matched_gtboxes, minibatch_indices)
            object_mask = tf.gather(object_mask, minibatch_indices)
            labels = tf.cast(tf.gather(labels, minibatch_indices), tf.int32)
            labels_one_hot = tf.one_hot(labels, depth=2)
            return minibatch_indices, minibatch_anchor_matched_gtboxes, object_mask, labels_one_hot
开发者ID:mbossX,项目名称:RRPN_FPN_Tensorflow,代码行数:33,代码来源:build_rpn.py



注:本文中的tensorflow.slice函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensorflow.space_to_batch函数代码示例发布时间:2022-05-27
下一篇:
Python tensorflow.size函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap