• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow.size函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.size函数的典型用法代码示例。如果您正苦于以下问题:Python size函数的具体用法?Python size怎么用?Python size使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了size函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: disjunction_of_literals

def disjunction_of_literals(literals, label="no_label"):
    list_of_literal_tensors = [lit.tensor for lit in literals]
    literals_tensor = tf.concat(1,list_of_literal_tensors)
    if default_tnorm == "product":
        result = 1.0-tf.reduce_prod(1.0-literals_tensor, 1, keep_dims=True)
    if default_tnorm == "yager2":
        result = tf.minimum(1.0, tf.sqrt(tf.reduce_sum(tf.square(literals_tensor), 1, keep_dims=True)))
    if default_tnorm == "luk":
        print "data aggregator is lukas"
        result = tf.minimum(1.0, tf.reduce_sum(literals_tensor, 1, keep_dims=True))
        PR(result)
    if default_tnorm == "goedel":
        result = tf.reduce_max(literals_tensor, 1, keep_dims=True, name=label)
    if default_aggregator == "product":
        return tf.reduce_prod(result, keep_dims=True)
    if default_aggregator == "mean":
        print "data aggregator is mean"
        return tf.reduce_mean(result, keep_dims=True, name=label)
    if default_aggregator == "gmean":
        return tf.exp(tf.mul(tf.reduce_sum(tf.log(result), keep_dims=True),
                             tf.inv(tf.to_float(tf.size(result)))), name=label)
    if default_aggregator == "hmean":
        print "data aggregator is hmean"
        return tf.div(tf.to_float(tf.size(result)), tf.reduce_sum(tf.inv(result), keep_dims=True))
    if default_aggregator == "min":
        print "data aggregator is min"
        return tf.reduce_min(result, keep_dims=True, name=label)
    if default_aggregator == "qmean":
        print "data aggregator is qmean"
        return tf.sqrt(tf.reduce_mean(tf.square(result), keep_dims=True), name=label)
    if default_aggregator == "cmean":
        print "data aggregator is cmean"
        return tf.pow(tf.reduce_mean(tf.pow(result, 3), keep_dims=True), tf.inv(tf.to_float(3)), name=label)
开发者ID:ivanDonadello,项目名称:knowPic,代码行数:33,代码来源:logictensornetworks.py


示例2: init

  def init(self):
    # init
    self.global_step = global_step = tf.Variable(0, trainable=False, name='global_step')
    self.learning_rate = learning_rate = tf.train.exponential_decay(1e-2, global_step, 500, 0.95, staircase=True)

    # Load classes
    src_table = tf.contrib.lookup.index_table_from_file('./iwslt15/vocab.en', default_value=0)
    tgt_table = tf.contrib.lookup.index_table_from_file('./iwslt15/vocab.vi', default_value=0)

    #src_table_size = src_table.size()
    #tgt_table_size = tgt_table.size()
    src_table_size = 17191
    tgt_table_size = 7709
    src_eos_id = tf.cast(src_table.lookup(tf.constant('</s>')), tf.int64)
    self.tgt_eos_id = tgt_eos_id = tf.cast(tgt_table.lookup(tf.constant('</s>')), tf.int64)
    self.tgt_sos_id = tgt_sos_id = tf.cast(tgt_table.lookup(tf.constant('<s>')), tf.int64)

    # file placeholder
    src_files = tf.placeholder(tf.string, shape=[None])
    tgt_files = tf.placeholder(tf.string, shape=[None])

    # Read data
    src_dataset = tf.contrib.data.TextLineDataset(src_files)
    tgt_dataset = tf.contrib.data.TextLineDataset(tgt_files)

    # Convert data to word indices
    src_dataset = src_dataset.map(lambda string: tf.concat([['<s>'], tf.string_split([string]).values, ['</s>']], 0))
    src_dataset = src_dataset.map(lambda words: (words, tf.size(words)))
    src_dataset = src_dataset.map(lambda words, size: (src_table.lookup(words), size))

    tgt_dataset = tgt_dataset.map(lambda string: tf.concat([['<s>'], tf.string_split([string]).values, ['</s>']], 0))
    tgt_dataset = tgt_dataset.map(lambda words: (words, tf.size(words)))
    tgt_dataset = tgt_dataset.map(lambda words, size: (tgt_table.lookup(words), size))

    # zip data
    dataset = tf.contrib.data.Dataset.zip((src_dataset, tgt_dataset))

    # batch
    batched_dataset = dataset.padded_batch(self.batch_size,
        padded_shapes=((tf.TensorShape([None]), tf.TensorShape([])),(tf.TensorShape([None]), tf.TensorShape([]))),
        padding_values=((src_eos_id, 0), (tgt_eos_id, 0)))
    batched_iterator = batched_dataset.make_initializable_iterator()
    ((source, source_lengths), (target, target_lengths)) = batched_iterator.get_next()

    self.target = target
    self.target_lengths = target_lengths
    self.source_lengths = source_lengths

    # Load embedding (dic limits to 100000)
    src_embed = tf.Variable(tf.random_normal([100000, self.embed_vector_size], stddev=0.1))
    self.tgt_embed = tgt_embed = tf.Variable(tf.random_normal([100000, self.embed_vector_size], stddev=0.1))

    self.src_lookup = src_lookup = tf.nn.embedding_lookup(src_embed, source)
    self.tgt_lookup = tgt_lookup = tf.nn.embedding_lookup(tgt_embed, target)

    # Projection Layer
    self.projection_layer = projection_layer = layers_core.Dense(tgt_table_size)

    return batched_iterator, src_files, tgt_files
开发者ID:flrngel,项目名称:understanding-ai,代码行数:59,代码来源:model.py


示例3: style_loss

def style_loss(CNN_structure, const_layers, var_layers, content_segs, style_segs, weight):
    loss_styles = []
    layer_count = float(len(const_layers))
    layer_index = 0

    _, content_seg_height, content_seg_width, _ = content_segs[0].get_shape().as_list()
    _, style_seg_height, style_seg_width, _ = style_segs[0].get_shape().as_list()
    for layer_name in CNN_structure:
        layer_name = layer_name[layer_name.find("/") + 1:]

        # downsampling segmentation
        if "pool" in layer_name:
            content_seg_width, content_seg_height = int(math.ceil(content_seg_width / 2)), int(math.ceil(content_seg_height / 2))
            style_seg_width, style_seg_height = int(math.ceil(style_seg_width / 2)), int(math.ceil(style_seg_height / 2))

            for i in xrange(len(content_segs)):
                content_segs[i] = tf.image.resize_bilinear(content_segs[i], tf.constant((content_seg_height, content_seg_width)))
                style_segs[i] = tf.image.resize_bilinear(style_segs[i], tf.constant((style_seg_height, style_seg_width)))

        elif "conv" in layer_name:
            for i in xrange(len(content_segs)):
                # have some differences on border with torch
                content_segs[i] = tf.nn.avg_pool(tf.pad(content_segs[i], [[0, 0], [1, 1], [1, 1], [0, 0]], "CONSTANT"), \
                ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='VALID')
                style_segs[i] = tf.nn.avg_pool(tf.pad(style_segs[i], [[0, 0], [1, 1], [1, 1], [0, 0]], "CONSTANT"), \
                ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='VALID')

        if layer_name == var_layers[layer_index].name[var_layers[layer_index].name.find("/") + 1:]:
            print("Setting up style layer: <{}>".format(layer_name))
            const_layer = const_layers[layer_index]
            var_layer = var_layers[layer_index]

            layer_index = layer_index + 1

            layer_style_loss = 0.0
            for content_seg, style_seg in zip(content_segs, style_segs):
                gram_matrix_const = gram_matrix(tf.multiply(const_layer, style_seg))
                style_mask_mean   = tf.reduce_mean(style_seg)
                gram_matrix_const = tf.cond(tf.greater(style_mask_mean, 0.),
                                        lambda: gram_matrix_const / (tf.to_float(tf.size(const_layer)) * style_mask_mean),
                                        lambda: gram_matrix_const
                                    )

                gram_matrix_var   = gram_matrix(tf.multiply(var_layer, content_seg))
                content_mask_mean = tf.reduce_mean(content_seg)
                gram_matrix_var   = tf.cond(tf.greater(content_mask_mean, 0.),
                                        lambda: gram_matrix_var / (tf.to_float(tf.size(var_layer)) * content_mask_mean),
                                        lambda: gram_matrix_var
                                    )

                diff_style_sum    = tf.reduce_mean(tf.squared_difference(gram_matrix_const, gram_matrix_var)) * content_mask_mean

                layer_style_loss += diff_style_sum

            loss_styles.append(layer_style_loss * weight)
    return loss_styles
开发者ID:4ever911,项目名称:deep-photo-styletransfer-tf,代码行数:56,代码来源:photo_style.py


示例4: _compareSize

 def _compareSize(self, x, use_gpu=False):
   np_ans = np.asarray(np.size(x))
   with self.test_session(use_gpu=use_gpu):
     tf_ans = tf.size(x)
     result = tf_ans.eval()
     tf_ans_64 = tf.size(x, out_type=tf.int64)
     result_64 = tf_ans_64.eval()
   self.assertAllEqual(np_ans, result)
   self.assertAllEqual(np_ans, result_64)
   self.assertShapeEqual(np_ans, tf_ans)
开发者ID:BloodD,项目名称:tensorflow,代码行数:10,代码来源:shape_ops_test.py


示例5: testSparseShape

    def testSparseShape(self):
        with self.test_session():
            sp_value = tf.SparseTensorValue(indices=((0, 1), (1, 0)), values=(42, 24), shape=(2, 2))
            self.assertAllEqual((2, 2), tf.shape(sp_value).eval())
            self.assertEqual(4, tf.size(sp_value).eval())
            self.assertEqual(2, tf.rank(sp_value).eval())

            sp = tf.SparseTensor.from_value(sp_value)
            self.assertAllEqual((2, 2), tf.shape(sp).eval())
            self.assertEqual(4, tf.size(sp).eval())
            self.assertEqual(2, tf.rank(sp).eval())
开发者ID:ppwwyyxx,项目名称:tensorflow,代码行数:11,代码来源:array_ops_test.py


示例6: testDenseShape

  def testDenseShape(self):
    with self.test_session():
      t_value = [[0, 42], [24, 0]]
      self.assertAllEqual((2, 2), tf.shape(t_value).eval())
      self.assertEqual(4, tf.size(t_value).eval())
      self.assertEqual(2, tf.rank(t_value).eval())

      t = tf.constant(t_value)
      self.assertAllEqual((2, 2), tf.shape(t).eval())
      self.assertEqual(4, tf.size(t).eval())
      self.assertEqual(2, tf.rank(t).eval())
开发者ID:Qstar,项目名称:tensorflow,代码行数:11,代码来源:array_ops_test.py


示例7: cross_add

def cross_add(a, b):
	'''

	:param a: 1-D tensor
	:param b: 1-D tensor
	:return: 1-D tensor
	'''
	a_len = tf.reshape(tf.size(a), [1])
	b_len = tf.reshape(tf.size(b), [1])
	aa = tf.transpose(tf.reshape(tf.tile(a, b_len), shape=tf.concat(0, [b_len, a_len])))
	ab_sum = tf.reshape(tf.add(aa, b), shape=tf.mul(a_len, b_len))
	return ab_sum
开发者ID:staylonging,项目名称:tf,代码行数:12,代码来源:utils.py


示例8: create_seed

def create_seed(filename,
                sample_rate,
                quantization_channels,
                window_size=WINDOW):
    audio, _ = librosa.load(filename, sr=sample_rate, mono=True)
    audio = audio_reader.trim_silence(audio)

    quantized = mu_law_encode(audio, quantization_channels)
    cut_index = tf.cond(tf.size(quantized) < tf.constant(window_size),
            lambda: tf.size(quantized),
            lambda: tf.constant(window_size))

    return quantized[:cut_index]
开发者ID:hephaex,项目名称:tensorflow_note,代码行数:13,代码来源:generate.py


示例9: lstm

def lstm(xs, l, size, num_layers, initial_state=None):
    batch_size = tf.size(xs)[0]
    n = tf.size(xs)[-1]
    lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(size, forget_bias=0.0)
    #add dropout
    cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * num_layers)
    if initial_state == None:
        initial_state = cell.zero_state(batch_size, data_type=tf.float32)
    inputs = tf.one_hot(xs, n)
#    inputs = [tf.squeeze(input_, [1])
#              for input_ in tf.split(1, num_steps, inputs)]
    outputs, _ = rnn.rnn(cell, inputs, initial_state=initial_state)
    #state
    return outputs
开发者ID:holdenlee,项目名称:tensorflow_learning,代码行数:14,代码来源:lstm_model.py


示例10: main

def main(argv=None):
    style_paths = FLAGS.STYLE_IMAGES.split(',')
    style_layers = FLAGS.STYLE_LAYERS.split(',')
    content_path = FLAGS.CONTENT_IMAGE
    content_layers = FLAGS.CONTENT_LAYERS.split(',')

    style_features_t = get_style_features(style_paths, style_layers)
    res = get_content_features(content_path, content_layers)
    content_features_t, image_t = res[:-1], res[-1]

    image = tf.constant(image_t)
    random = tf.random_normal(image_t.shape)
    initial = tf.Variable(random if FLAGS.RANDOM_INIT else image)

    net, _ = vgg.net(FLAGS.VGG_PATH, initial)

    content_loss = 0
    for content_features, layer in zip(content_features_t, content_layers):
        layer_size = tf.size(content_features)
        content_loss += tf.nn.l2_loss(net[layer] - content_features) / tf.to_float(layer_size)
    content_loss = FLAGS.CONTENT_WEIGHT * content_loss / len(content_layers)

    style_loss = 0
    for style_gram, layer in zip(style_features_t, style_layers):
        layer_size = tf.size(style_gram)
        style_loss += tf.nn.l2_loss(gram(net[layer]) - style_gram) / tf.to_float(layer_size)
        #style_loss += tf.sqrt(tf.reduce_sum(tf.pow(gram(net[layer]) - style_gram, 2)))
    style_loss = FLAGS.STYLE_WEIGHT * style_loss

    tv_loss = FLAGS.TV_WEIGHT * total_variation_loss(initial)

    total_loss = content_loss + style_loss + tv_loss

    train_op = tf.train.AdamOptimizer(FLAGS.LEARNING_RATE).minimize(total_loss)

    output_image = tf.image.encode_png(tf.saturate_cast(tf.squeeze(initial) + reader.mean_pixel, tf.uint8))

    with tf.Session() as sess:
        sess.run(tf.initialize_all_variables())
        start_time = time.time()
        for step in range(FLAGS.NUM_ITERATIONS):
            _, loss_t, cl, sl = sess.run([train_op, total_loss, content_loss, style_loss])
            elapsed = time.time() - start_time
            start_time = time.time()
            print(step, elapsed, loss_t, cl, sl)
        image_t = sess.run(output_image)
        with open('out.png', 'wb') as f:
            f.write(image_t)
开发者ID:OlavHN,项目名称:fast-neural-style,代码行数:48,代码来源:neural_style.py


示例11: get_train

def get_train(train_ph_dict,var_dict,var_ph_dict):
    mid0 = tf.one_hot(train_ph_dict['choice_0'], 9, axis=-1, dtype=tf.float32)
    mid0 = mid0 * get_q(train_ph_dict['state_0'],var_dict)
    mid0 = tf.reduce_sum(mid0, reduction_indices=[1])

    mid1 = get_q(train_ph_dict['state_1'],var_ph_dict)
    mid1 = tf.reduce_max(mid1, reduction_indices=[1])  
    mid1 = mid1 * train_ph_dict['cont']
    mid1 = mid1 * tf.constant(TRAIN_BETA)

    l2r = tf.constant(0.0)
    cell_count = tf.constant(0.0)
    for v in var_dict.values():
        l2r = l2r + get_l2(v)
        cell_count = cell_count + tf.to_float(tf.size(v))
    l2r = l2r / cell_count
    l2r = l2r / tf.constant(ELEMENT_L2_FACTOR*ELEMENT_L2_FACTOR)
    l2r = l2r * tf.constant(L2_WEIGHT)
    
    mid = mid0-mid1-train_ph_dict['reward_1']
#    mid = mid * mid
    mid = tf.abs(mid)
    mid = tf.reduce_mean(mid)
    score_diff = mid
    mid = mid + l2r
    mid = mid + ( tf.abs( tf.reduce_mean(var_dict['b5']) ) * tf.constant(L2_WEIGHT) )

    loss = mid

    mid = tf.train.GradientDescentOptimizer(0.5).minimize(mid,var_list=var_dict.values())
    train = mid
    
    return train, loss, score_diff
开发者ID:luzi82,项目名称:codelog.tensorflow.tictactoe,代码行数:33,代码来源:deeplearn2.py


示例12: fpn_map_rois_to_levels

def fpn_map_rois_to_levels(boxes):
    """
    Assign boxes to level 2~5.

    Args:
        boxes (nx4):

    Returns:
        [tf.Tensor]: 4 tensors for level 2-5. Each tensor is a vector of indices of boxes in its level.
        [tf.Tensor]: 4 tensors, the gathered boxes in each level.

    Be careful that the returned tensor could be empty.
    """
    sqrtarea = tf.sqrt(tf_area(boxes))
    level = tf.to_int32(tf.floor(
        4 + tf.log(sqrtarea * (1. / 224) + 1e-6) * (1.0 / np.log(2))))

    # RoI levels range from 2~5 (not 6)
    level_ids = [
        tf.where(level <= 2),
        tf.where(tf.equal(level, 3)),   # == is not supported
        tf.where(tf.equal(level, 4)),
        tf.where(level >= 5)]
    level_ids = [tf.reshape(x, [-1], name='roi_level{}_id'.format(i + 2))
                 for i, x in enumerate(level_ids)]
    num_in_levels = [tf.size(x, name='num_roi_level{}'.format(i + 2))
                     for i, x in enumerate(level_ids)]
    add_moving_summary(*num_in_levels)

    level_boxes = [tf.gather(boxes, ids) for ids in level_ids]
    return level_ids, level_boxes
开发者ID:tobyma,项目名称:tensorpack,代码行数:31,代码来源:model.py


示例13: f

    def f(X):
        """
        prob: n probabilities
        box: nx4 boxes

        Returns: n boolean, the selection
        """
        prob, box = X
        output_shape = tf.shape(prob)
        # filter by score threshold
        ids = tf.reshape(tf.where(prob > cfg.TEST.RESULT_SCORE_THRESH), [-1])
        prob = tf.gather(prob, ids)
        box = tf.gather(box, ids)
        # NMS within each class
        selection = tf.image.non_max_suppression(
            box, prob, cfg.TEST.RESULTS_PER_IM, cfg.TEST.FRCNN_NMS_THRESH)
        selection = tf.to_int32(tf.gather(ids, selection))
        # sort available in TF>1.4.0
        # sorted_selection = tf.contrib.framework.sort(selection, direction='ASCENDING')
        sorted_selection = -tf.nn.top_k(-selection, k=tf.size(selection))[0]
        mask = tf.sparse_to_dense(
            sparse_indices=sorted_selection,
            output_shape=output_shape,
            sparse_values=True,
            default_value=False)
        return mask
开发者ID:tobyma,项目名称:tensorpack,代码行数:26,代码来源:model.py


示例14: hard_negative_mining

      def hard_negative_mining():
        bboxes_per_batch = tf.unstack(bboxes)
        classification_loss_per_batch = tf.unstack(classification_loss)
        num_positives_per_batch = tf.unstack(tf.reduce_sum(positives, axis=-1))
        neg_class_loss_per_batch = tf.unstack(neg_class_loss_all)

        neg_class_losses = []
        total_negatives = []

        for bboxes_per_image, classification_loss_per_image, num_positives_per_image, neg_class_loss_per_image in \
            zip(bboxes_per_batch, classification_loss_per_batch, num_positives_per_batch, neg_class_loss_per_batch):
          min_negatives_keep = tf.maximum(self.neg_pos_ratio * num_positives_per_image, 3)
          num_negatives_keep = tf.minimum(min_negatives_keep,
                                          tf.count_nonzero(neg_class_loss_per_image, dtype=tf.float32))

          indices = tf.image.non_max_suppression(bboxes_per_image, classification_loss_per_image,
                                                 tf.to_int32(num_negatives_keep), iou_threshold=0.99)
          num_negatives = tf.size(indices)
          total_negatives.append(num_negatives)
          expanded_indexes = tf.expand_dims(indices, axis=1)  # shape: (num_negatives, 1)
          negatives_keep = tf.scatter_nd(expanded_indexes, updates=tf.ones_like(indices, dtype=tf.int32),
                                         shape=tf.shape(classification_loss_per_image))  # shape: (num_priors,)
          negatives_keep = tf.to_float(tf.reshape(negatives_keep, [num_priors]))  # shape: (batch_size, num_priors)
          neg_class_losses.append(tf.reduce_sum(classification_loss_per_image * negatives_keep, axis=-1))  # shape: (1,)

        return tf.stack(neg_class_losses), tf.reduce_sum(tf.stack(total_negatives))
开发者ID:undeadinu,项目名称:training_toolbox_tensorflow,代码行数:26,代码来源:loss.py


示例15: content_loss

def content_loss(endpoints_dict, content_layers):
    content_loss = 0
    for layer in content_layers:
        generated_images, content_images = tf.split(endpoints_dict[layer], 2, 0)
        size = tf.size(generated_images)
        content_loss += tf.nn.l2_loss(generated_images - content_images) * 2 / tf.to_float(size)  # remain the same as in the paper
    return content_loss
开发者ID:wilfredyou,项目名称:ImageStyleTransform,代码行数:7,代码来源:losses.py


示例16: _forward_log_det_jacobian

  def _forward_log_det_jacobian(self, x, **kwargs):
    x = tf.convert_to_tensor(x, name="x")

    fldj = tf.cast(0., dtype=x.dtype.base_dtype)

    if not self.bijectors:
      return fldj

    event_ndims = self._maybe_get_static_event_ndims(
        self.forward_min_event_ndims)

    if _use_static_shape(x, event_ndims):
      event_shape = x.shape[x.shape.ndims - event_ndims:]
    else:
      event_shape = tf.shape(x)[tf.rank(x) - event_ndims:]

    for b in reversed(self.bijectors):
      fldj += b.forward_log_det_jacobian(
          x, event_ndims=event_ndims, **kwargs.get(b.name, {}))
      if _use_static_shape(x, event_ndims):
        event_shape = b.forward_event_shape(event_shape)
        event_ndims = self._maybe_get_static_event_ndims(event_shape.ndims)
      else:
        event_shape = b.forward_event_shape_tensor(event_shape)
        event_ndims = tf.size(event_shape)
        event_ndims_ = self._maybe_get_static_event_ndims(event_ndims)
        if event_ndims_ is not None:
          event_ndims = event_ndims_

      x = b.forward(x, **kwargs.get(b.name, {}))

    return fldj
开发者ID:lewisKit,项目名称:probability,代码行数:32,代码来源:chain.py


示例17: _create_classification_targets

  def _create_classification_targets(self, groundtruth_labels, match):
    """Create classification targets for each anchor.

    Assign a classification target of for each anchor to the matching
    groundtruth label that is provided by match.  Anchors that are not matched
    to anything are given the target self._unmatched_cls_target

    Args:
      groundtruth_labels:  a tensor of shape [num_gt_boxes, d_1, ... d_k]
        with labels for each of the ground_truth boxes. The subshape
        [d_1, ... d_k] can be empty (corresponding to scalar labels).
      match: a matcher.Match object that provides a matching between anchors
        and groundtruth boxes.

    Returns:
      cls_targets: a float32 tensor with shape [num_anchors, d_1, d_2 ... d_k],
        where the subshape [d_1, ..., d_k] is compatible with groundtruth_labels
        which has shape [num_gt_boxes, d_1, d_2, ... d_k].
    """
    matched_anchor_indices = match.matched_column_indices()
    unmatched_ignored_anchor_indices = (match.
                                        unmatched_or_ignored_column_indices())
    matched_gt_indices = match.matched_row_indices()
    matched_cls_targets = tf.gather(groundtruth_labels, matched_gt_indices)

    ones = self._unmatched_cls_target.shape.ndims * [1]
    unmatched_ignored_cls_targets = tf.tile(
        tf.expand_dims(self._unmatched_cls_target, 0),
        tf.stack([tf.size(unmatched_ignored_anchor_indices)] + ones))

    cls_targets = tf.dynamic_stitch(
        [matched_anchor_indices, unmatched_ignored_anchor_indices],
        [matched_cls_targets, unmatched_ignored_cls_targets])
    return cls_targets
开发者ID:GERASM1,项目名称:Semana-i-Equipo-Seat-Here,代码行数:34,代码来源:target_assigner.py


示例18: gauss_kl_diag

def gauss_kl_diag(q_mu, q_sqrt, K):
    """
    Compute the KL divergence from

          q(x) = N(q_mu, q_sqrt^2)
    to
          p(x) = N(0, K)

    We assume multiple independent distributions, given by the columns of
    q_mu and q_sqrt.

    q_mu is a matrix, each column contains a mean

    q_sqrt is a matrix, each column represents the diagonal of a square-root
        matrix of the covariance of q.

    K is a positive definite matrix: the covariance of p.
    """
    L = tf.cholesky(K)
    alpha = tf.matrix_triangular_solve(L, q_mu, lower=True)
    KL = 0.5 * tf.reduce_sum(tf.square(alpha))  # Mahalanobis term.
    num_latent = tf.cast(tf.shape(q_sqrt)[1], float_type)
    KL += num_latent * 0.5 * tf.reduce_sum(
        tf.log(tf.square(tf.diag_part(L))))  # Prior log-det term.
    KL += -0.5 * tf.cast(tf.size(q_sqrt), float_type)  # constant term
    KL += -0.5 * tf.reduce_sum(tf.log(tf.square(q_sqrt)))  # Log-det of q-cov
    L_inv = tf.matrix_triangular_solve(L, eye(tf.shape(L)[0]), lower=True)
    K_inv = tf.matrix_triangular_solve(tf.transpose(L), L_inv, lower=False)
    KL += 0.5 * tf.reduce_sum(tf.expand_dims(tf.diag_part(K_inv), 1)
                              * tf.square(q_sqrt))  # Trace term.
    return KL
开发者ID:GPflow,项目名称:GPflow,代码行数:31,代码来源:kullback_leiblers.py


示例19: loss

def loss(logits, labels):
  """Calculates the loss from the logits and the labels.

  Args:
    logits: Logits tensor, float - [batch_size, NUM_CLASSES].
    labels: Labels tensor, int32 - [batch_size].

  Returns:
    loss: Loss tensor of type float.
  """
  # Convert from sparse integer labels in the range [0, NUM_CLASSES)
  # to 1-hot dense float vectors (that is we will have batch_size vectors,
  # each with NUM_CLASSES values, all of which are 0.0 except there will
  # be a 1.0 in the entry corresponding to the label).
  batch_size = tf.size(labels)
  labels = tf.expand_dims(labels, 1)
  indices = tf.expand_dims(tf.range(0, batch_size), 1)
  concated = tf.concat(1, [indices, labels])
  onehot_labels = tf.sparse_to_dense(
      concated, tf.pack([batch_size, NUM_CLASSES]), 1.0, 0.0)
  cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits,
                                                          onehot_labels,
                                                          name='xentropy')
  loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
  return loss
开发者ID:deerishi,项目名称:assignment5ML,代码行数:25,代码来源:mnist1HiddenLayer.py


示例20: _build_features_dataset

    def _build_features_dataset(self, features_source):
        
        max_len = self._max_len
        vocab = self._vocab
        tokenizer = self._tokenizer
        num_parallel_calls = self._num_parallel_calls

        dataset = tf.data.TextLineDataset(features_source)
        dataset = dataset.map(lambda text: tokenizer(text),
            num_parallel_calls=num_parallel_calls)
        
        dataset = dataset.map(lambda tokens: tokens[:max_len],
            num_parallel_calls=num_parallel_calls)     

        dataset = dataset.map(lambda tokens: tf.cast(vocab.lookup(tokens), tf.int32),
            num_parallel_calls=num_parallel_calls) 

        def pad_(x):

            ids = np.zeros(max_len, dtype=np.int32)
            ids[:x.shape[0]] = x
            return ids
        
        dataset = dataset.map(lambda x: tf.py_func(pad_, [x], [x.dtype]), num_parallel_calls)


        dataset = dataset.map(lambda token_ids: {'ids': token_ids, 'length': tf.size(token_ids)},
            num_parallel_calls=num_parallel_calls) 
        
        dataset = dataset.map(lambda x: {'ids': tf.reshape(x['ids'], [self._max_len]), 'length': x['length']})
        
        return dataset
开发者ID:mhjabreel,项目名称:CharCNN,代码行数:32,代码来源:data.py



注:本文中的tensorflow.size函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensorflow.slice函数代码示例发布时间:2022-05-27
下一篇:
Python tensorflow.sin函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap