• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensorflow.set_random_seed函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tensorflow.set_random_seed函数的典型用法代码示例。如果您正苦于以下问题:Python set_random_seed函数的具体用法?Python set_random_seed怎么用?Python set_random_seed使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了set_random_seed函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: main

def main():
    tf.set_random_seed(10)
    with tf.Session() as sess:
        rnn_cell = tf.nn.rnn_cell.LSTMCell(10)

        # defining initial state
        initial_state = rnn_cell.zero_state(4, dtype=tf.float32)

        inputs = tf.Variable(tf.random_uniform(shape = (4, 30, 100)), name='input')
        inputs = tf.identity(inputs, "input_node")

        # 'state' is a tensor of shape [batch_size, cell_state_size]
        outputs, state = tf.nn.dynamic_rnn(rnn_cell, inputs, initial_state=initial_state, dtype=tf.float32)

        y1 = tf.identity(outputs, 'outputs')
        y2 = tf.identity(state, 'state')

        t1 = tf.ones([4, 30, 10])
        t2 = tf.ones([4, 10])

        loss = tf.reduce_sum((y1 - t1) * (y1 - t1)) + tf.reduce_sum((y2 - t2) * (y2 - t2))
        tf.identity(loss, name = "lstm_loss")
        # tf.summary.FileWriter('/tmp/log', tf.get_default_graph())

        net_outputs = map(lambda x: tf.get_default_graph().get_tensor_by_name(x), argv[2].split(','))
        run_model(net_outputs, argv[1], None, argv[3] == 'True')
开发者ID:ru003ar,项目名称:BigDL,代码行数:26,代码来源:dynamic_lstm.py


示例2: gradient_memory_mbs

def gradient_memory_mbs():
  """Evaluates gradient, prints peak memory."""
  start_time0 = time.perf_counter()
  start_time = start_time0
  tf.reset_default_graph()
  tf.set_random_seed(1)
  
  train_op, loss = create_train_op_and_loss()
  print("Graph construction: %.2f ms" %(1000*(time.perf_counter()-start_time)))

  g = tf.get_default_graph()
  ops = g.get_operations()
  
  for op in ge.filter_ops_from_regex(ops, "block_layer"):
    tf.add_to_collection("checkpoints", op.outputs[0])

  sess = create_session()
  sessrun(tf.global_variables_initializer())
  start_time = time.perf_counter()
  sessrun(train_op)
  start_time = time.perf_counter()
  print("loss %f"%(sess.run(loss),))
  
  print("Compute time: %.2f ms" %(1000*(time.perf_counter()-start_time)))

  mem_use = mem_util.peak_memory(run_metadata)['/gpu:0']/1e6
  print("Memory used: %.2f MB "%(mem_use))
  total_time = time.perf_counter()-start_time0
  assert total_time < 100
  return mem_use
开发者ID:BhaskarNallani,项目名称:gradient-checkpointing,代码行数:30,代码来源:imagenet_test.py


示例3: testTrainWithTrace

  def testTrainWithTrace(self):
    logdir = os.path.join(tempfile.mkdtemp(prefix=self.get_temp_dir()),
                          'tmp_logs')
    with tf.Graph().as_default():
      tf.set_random_seed(0)
      tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
      tf_labels = tf.constant(self._labels, dtype=tf.float32)

      tf_predictions = LogisticClassifier(tf_inputs)
      slim.losses.log_loss(tf_predictions, tf_labels)
      total_loss = slim.losses.get_total_loss()
      tf.summary.scalar('total_loss', total_loss)

      optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0)

      train_op = slim.learning.create_train_op(total_loss, optimizer)

      loss = slim.learning.train(
          train_op,
          logdir,
          number_of_steps=300,
          log_every_n_steps=10,
          trace_every_n_steps=100)
    self.assertIsNotNone(loss)
    for trace_step in [1, 101, 201]:
      trace_filename = 'tf_trace-%d.json' % trace_step
      self.assertTrue(
          os.path.isfile(os.path.join(logdir, trace_filename)))
开发者ID:moolighty,项目名称:tensorflow,代码行数:28,代码来源:learning_test.py


示例4: initialize_parameters

def initialize_parameters():
    """
    Initializes parameters to build a neural network with tensorflow. The shapes are:
                        W1 : [25, 12288]
                        b1 : [25, 1]
                        W2 : [12, 25]
                        b2 : [12, 1]
                        W3 : [6, 12]
                        b3 : [6, 1]
    
    Returns:
    parameters -- a dictionary of tensors containing W1, b1, W2, b2, W3, b3
    """
    
    tf.set_random_seed(1)                   # so that your "random" numbers match ours
        
    ### START CODE HERE ### (approx. 6 lines of code)
    W1 = tf.get_variable("W1", [25,12288], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
    b1 = tf.get_variable("b1", [25,1], initializer = tf.zeros_initializer())
    W2 = tf.get_variable("W2", [12,25], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
    b2 = tf.get_variable("b2", [12,1], initializer = tf.zeros_initializer())
    W3 = tf.get_variable("W3", [6,12], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
    b3 = tf.get_variable("b3", [6,1], initializer = tf.zeros_initializer())
    ### END CODE HERE ###

    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2,
                  "W3": W3,
                  "b3": b3}
    
    return parameters
开发者ID:shriavi,项目名称:datasciencecoursera,代码行数:33,代码来源:Tensorflow+Tutorial.py


示例5: testEmptyUpdateOps

  def testEmptyUpdateOps(self):
    with tf.Graph().as_default():
      tf.set_random_seed(0)
      tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
      tf_labels = tf.constant(self._labels, dtype=tf.float32)

      tf_predictions = BatchNormClassifier(tf_inputs)
      slim.losses.log_loss(tf_predictions, tf_labels)
      total_loss = slim.losses.get_total_loss()
      optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0)

      train_op = slim.learning.create_train_op(total_loss, optimizer,
                                               update_ops=[])

      moving_mean = tf.contrib.framework.get_variables_by_name('moving_mean')[0]
      moving_variance = tf.contrib.framework.get_variables_by_name(
          'moving_variance')[0]

      with tf.Session() as sess:
        # Initialize all variables
        sess.run(tf.global_variables_initializer())
        mean, variance = sess.run([moving_mean, moving_variance])
        # After initialization moving_mean == 0 and moving_variance == 1.
        self.assertAllClose(mean, [0] * 4)
        self.assertAllClose(variance, [1] * 4)

        for _ in range(10):
          sess.run([train_op])
        mean = moving_mean.eval()
        variance = moving_variance.eval()
        # Since we skip update_ops the moving_vars are not updated.
        self.assertAllClose(mean, [0] * 4)
        self.assertAllClose(variance, [1] * 4)
开发者ID:moolighty,项目名称:tensorflow,代码行数:33,代码来源:learning_test.py


示例6: _do_sampling

  def _do_sampling(self, logits, num_samples, sampler):
    """Samples using the supplied sampler and inputs.

    Args:
      logits: Numpy ndarray of shape [batch_size, num_classes].
      num_samples: Int; number of samples to draw.
      sampler: A sampler function that takes (1) a [batch_size, num_classes]
        Tensor, (2) num_samples and returns a [batch_size, num_samples] Tensor.

    Returns:
      Frequencies from sampled classes; shape [batch_size, num_classes].
    """
    with self.test_session() as sess:
      tf.set_random_seed(1618)
      op = sampler(tf.constant(logits), num_samples)
      d = sess.run(op)

    batch_size, num_classes = logits.shape
    freqs_mat = []
    for i in range(batch_size):
      cnts = dict(collections.Counter(d[i, :]))
      freqs = [(cnts[k] * 1. / num_samples if k in cnts else 0)
               for k in range(num_classes)]
      freqs_mat.append(freqs)

    return freqs_mat
开发者ID:0-T-0,项目名称:tensorflow,代码行数:26,代码来源:multinomial_op_test.py


示例7: wide_model

def wide_model(numeric_input, category_input, vocabs):
    transpose_category_input = tf.transpose(category_input)
    category_sum = None
    # Append embadding category to numeric_sum
    for i in range(0, len(vocabs)):
        embedding = tf.get_variable("wideem" + str(i), [vocabs[i], 8],
                                    initializer=tf.contrib.layers.xavier_initializer()
                                    #partitioner=tf.fixed_size_partitioner(n_pss))
                                    #partitioner=tf.min_max_variable_partitioner(n_pss, 0, 2 << 10)
                                    )
        # Pick one column from category input
        col = tf.gather(transpose_category_input, [i])[0]
        #col = tf.nn.embedding_lookup(transpose_category_input, [i])[0]

        # Same as make [0001]*[w1,w2,w3,w4] = lookup w4
        #embedded_col = embedding_lookup(tf.identity(embedding), col)  # number * embedding output number
        embedded_col = embedding_ops.embedding_lookup_unique(embedding, col)

        if category_sum is None:
            category_sum = embedded_col
        else:
            category_sum = tf.concat([category_sum, embedded_col], 1)

    tf.set_random_seed(1)
    w = tf.get_variable("W", [numeric_input.shape[1] + category_sum.shape[1], 1], initializer=tf.contrib.layers.xavier_initializer())
    wmodel_logits_sum = tf.matmul(tf.concat([numeric_input, category_sum], 1), w)

    return wmodel_logits_sum
开发者ID:ShifuML,项目名称:shifu,代码行数:28,代码来源:wnp_ssgd_not_embadding.py


示例8: testCreateOnecloneWithPS

  def testCreateOnecloneWithPS(self):
    g = tf.Graph()
    with g.as_default():
      tf.set_random_seed(0)
      tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
      tf_labels = tf.constant(self._labels, dtype=tf.float32)

      model_fn = BatchNormClassifier
      model_args = (tf_inputs, tf_labels)
      deploy_config = model_deploy.DeploymentConfig(num_clones=1,
                                                    num_ps_tasks=1)

      self.assertEqual(slim.get_variables(), [])
      clones = model_deploy.create_clones(deploy_config, model_fn, model_args)
      self.assertEqual(len(slim.get_variables()), 5)
      update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
      self.assertEqual(len(update_ops), 2)

      optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0)
      total_loss, grads_and_vars = model_deploy.optimize_clones(clones,
                                                                optimizer)
      self.assertEqual(len(grads_and_vars), len(tf.trainable_variables()))
      self.assertEqual(total_loss.op.name, 'total_loss')
      for g, v in grads_and_vars:
        self.assertDeviceEqual(g.device, '/job:worker/device:GPU:0')
        self.assertDeviceEqual(v.device, '/job:ps/task:0/CPU:0')
开发者ID:ALISCIFP,项目名称:models,代码行数:26,代码来源:model_deploy_test.py


示例9: __init__

	def __init__(self, env, discount = 0.90, learning_rate = 0.008):
		self.env = env
		self.observation_space = env.observation_space
		self.action_space = env.action_space
		self.action_space_n = self.action_space.n
		self.n_input = len(self.observation_space.high)
		self.n_hidden_1 = 20
		#Learning Parameters
		self.learning_rate = learning_rate 
		self.discount = discount
		self.num_epochs = 20   
		self.batch_size = 32 
		self.graph = tf.Graph()
		#Neural network is a Multi-Layered perceptron with one hidden layer containing tanh units
		with self.graph.as_default():
			tf.set_random_seed(1234)
			self.weights = {
			'h1': tf.Variable(tf.random_normal([self.n_input, self.n_hidden_1])),
			'out': tf.Variable(tf.random_normal([self.n_hidden_1, 1]))
			}
			self.biases = {
    		'b1': tf.Variable(tf.random_normal([self.n_hidden_1])),
    		'out': tf.Variable(tf.random_normal([1]))
			}
			self.state_input = self.x = tf.placeholder("float", [None, len(self.observation_space.high)])#State input
			self.return_input = tf.placeholder("float") #Target return
			self.value_pred = self.multilayer_perceptron(self.state_input, self.weights, self.biases)			
			self.loss = tf.reduce_mean(tf.pow(self.value_pred - self.return_input,2))			
			self.optim = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
			init = tf.initialize_all_variables()
		print("Value Graph Constructed")
		self.sess = tf.Session(graph = self.graph)
		self.sess.run(init)
开发者ID:mohakbhardwaj,项目名称:reinforcement-learning,代码行数:33,代码来源:cartpole-policy-gradient.py


示例10: testCreateMulticlone

  def testCreateMulticlone(self):
    g = tf.Graph()
    with g.as_default():
      tf.set_random_seed(0)
      tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
      tf_labels = tf.constant(self._labels, dtype=tf.float32)

      model_fn = BatchNormClassifier
      clone_args = (tf_inputs, tf_labels)
      num_clones = 4
      deploy_config = model_deploy.DeploymentConfig(num_clones=num_clones)

      self.assertEqual(slim.get_variables(), [])
      clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
      self.assertEqual(len(slim.get_variables()), 5)
      for v in slim.get_variables():
        self.assertDeviceEqual(v.device, 'CPU:0')
        self.assertDeviceEqual(v.value().device, 'CPU:0')
      self.assertEqual(len(clones), num_clones)
      for i, clone in enumerate(clones):
        self.assertEqual(
            clone.outputs.op.name,
            'clone_%d/BatchNormClassifier/fully_connected/Sigmoid' % i)
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, clone.scope)
        self.assertEqual(len(update_ops), 2)
        self.assertEqual(clone.scope, 'clone_%d/' % i)
        self.assertDeviceEqual(clone.device, 'GPU:%d' % i)
开发者ID:ALISCIFP,项目名称:models,代码行数:27,代码来源:model_deploy_test.py


示例11: testCreateMulticloneWithPS

  def testCreateMulticloneWithPS(self):
    g = tf.Graph()
    with g.as_default():
      tf.set_random_seed(0)
      tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
      tf_labels = tf.constant(self._labels, dtype=tf.float32)

      model_fn = BatchNormClassifier
      clone_args = (tf_inputs, tf_labels)
      deploy_config = model_deploy.DeploymentConfig(num_clones=2,
                                                    num_ps_tasks=2)

      self.assertEqual(slim.get_variables(), [])
      clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
      self.assertEqual(len(slim.get_variables()), 5)
      for i, v in enumerate(slim.get_variables()):
        t = i % 2
        self.assertDeviceEqual(v.device, '/job:ps/task:%d/device:CPU:0' % t)
        self.assertDeviceEqual(v.device, v.value().device)
      self.assertEqual(len(clones), 2)
      for i, clone in enumerate(clones):
        self.assertEqual(
            clone.outputs.op.name,
            'clone_%d/BatchNormClassifier/fully_connected/Sigmoid' % i)
        self.assertEqual(clone.scope, 'clone_%d/' % i)
        self.assertDeviceEqual(clone.device, '/job:worker/device:GPU:%d' % i)
开发者ID:ALISCIFP,项目名称:models,代码行数:26,代码来源:model_deploy_test.py


示例12: testCreateLogisticClassifier

  def testCreateLogisticClassifier(self):
    g = tf.Graph()
    with g.as_default():
      tf.set_random_seed(0)
      tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
      tf_labels = tf.constant(self._labels, dtype=tf.float32)

      model_fn = LogisticClassifier
      clone_args = (tf_inputs, tf_labels)
      deploy_config = model_deploy.DeploymentConfig(num_clones=1)

      self.assertEqual(slim.get_variables(), [])
      clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
      clone = clones[0]
      self.assertEqual(len(slim.get_variables()), 2)
      for v in slim.get_variables():
        self.assertDeviceEqual(v.device, 'CPU:0')
        self.assertDeviceEqual(v.value().device, 'CPU:0')
      self.assertEqual(clone.outputs.op.name,
                       'LogisticClassifier/fully_connected/Sigmoid')
      self.assertEqual(clone.scope, '')
      self.assertDeviceEqual(clone.device, 'GPU:0')
      self.assertEqual(len(slim.losses.get_losses()), 1)
      update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
      self.assertEqual(update_ops, [])
开发者ID:ALISCIFP,项目名称:models,代码行数:25,代码来源:model_deploy_test.py


示例13: main

def main(hps):

    # Initialize Horovod.
    hvd.init()

    # Create tensorflow session
    sess = tensorflow_session()

    # Download and load dataset.
    tf.set_random_seed(hvd.rank() + hvd.size() * hps.seed)
    np.random.seed(hvd.rank() + hvd.size() * hps.seed)

    # Get data and set train_its and valid_its
    train_iterator, test_iterator, data_init = get_data(hps, sess)
    hps.train_its, hps.test_its, hps.full_test_its = get_its(hps)

    # Create log dir
    logdir = os.path.abspath(hps.logdir) + "/"
    if not os.path.exists(logdir):
        os.mkdir(logdir)

    # Create model
    import model
    model = model.model(sess, hps, train_iterator, test_iterator, data_init)

    # Initialize visualization functions
    visualise = init_visualizations(hps, model, logdir)

    if not hps.inference:
        # Perform training
        train(sess, model, hps, logdir, visualise)
    else:
        infer(sess, model, hps, test_iterator)
开发者ID:chinatian,项目名称:glow,代码行数:33,代码来源:train.py


示例14: simple_test

def simple_test(env_fn, learn_fn, min_reward_fraction, n_trials=N_TRIALS):
    def seeded_env_fn():
        env = env_fn()
        env.seed(0)
        return env

    np.random.seed(0)
    env = DummyVecEnv([seeded_env_fn])
    with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(allow_soft_placement=True)).as_default():
        tf.set_random_seed(0)
        model = learn_fn(env)
        sum_rew = 0
        done = True
        for i in range(n_trials):
            if done:
                obs = env.reset()
                state = model.initial_state
            if state is not None:
                a, v, state, _ = model.step(obs, S=state, M=[False])
            else:
                a, v, _, _ = model.step(obs)
            obs, rew, done, _ = env.step(a)
            sum_rew += float(rew)
        print("Reward in {} trials is {}".format(n_trials, sum_rew))
        assert sum_rew > min_reward_fraction * n_trials, \
            'sum of rewards {} is less than {} of the total number of trials {}'.format(sum_rew, min_reward_fraction, n_trials)
开发者ID:MrGoogol,项目名称:baselines,代码行数:26,代码来源:util.py


示例15: __init__

    def __init__(self, input_dim=None, output_dim=1, init_path=None, opt_algo='gd', learning_rate=1e-2, l2_weight=0,
                 random_seed=None):
        Model.__init__(self)
        init_vars = [('w', [input_dim, output_dim], 'xavier', dtype),
                     ('b', [output_dim], 'zero', dtype)]
        self.graph = tf.Graph()
        with self.graph.as_default():
            if random_seed is not None:
                tf.set_random_seed(random_seed)
            self.X = tf.sparse_placeholder(dtype)
            self.y = tf.placeholder(dtype)
            self.vars = utils.init_var_map(init_vars, init_path)  # 初始化变量w, b

            w = self.vars['w']
            b = self.vars['b']
            xw = tf.sparse_tensor_dense_matmul(self.X, w)
            logits = tf.reshape(xw + b, [-1])
            self.y_prob = tf.sigmoid(logits)

            self.loss = tf.reduce_mean(
                tf.nn.sigmoid_cross_entropy_with_logits(labels=self.y, logits=logits)) + \
                        l2_weight * tf.nn.l2_loss(xw)
            self.optimizer = utils.get_optimizer(opt_algo, learning_rate, self.loss)

            config = tf.ConfigProto()
            config.gpu_options.allow_growth = True
            self.sess = tf.Session(config=config)
            tf.global_variables_initializer().run(session=self.sess)
开发者ID:zgcgreat,项目名称:WSDM,代码行数:28,代码来源:models.py


示例16: testProbabilitiesCanBeChanged

    def testProbabilitiesCanBeChanged(self):
        # Set up graph.
        tf.set_random_seed(1234)
        lbl1 = 0
        lbl2 = 3
        # This cond allows the necessary class queues to be populated.
        label = tf.cond(tf.greater(0.5, tf.random_uniform([])), lambda: tf.constant(lbl1), lambda: tf.constant(lbl2))
        val = [np.array([1, 4]) * label]
        probs = tf.placeholder(tf.float32, shape=[5])
        batch_size = 2

        data_batch, labels = tf.contrib.training.stratified_sample_unknown_dist(val, label, probs, batch_size)

        with self.test_session() as sess:
            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(coord=coord)

            for _ in range(5):
                [data], lbls = sess.run([data_batch, labels], feed_dict={probs: [1, 0, 0, 0, 0]})
                for data_example in data:
                    self.assertListEqual([0, 0], list(data_example))
                self.assertListEqual([0, 0], list(lbls))

            # Now change distribution and expect different output.
            for _ in range(5):
                [data], lbls = sess.run([data_batch, labels], feed_dict={probs: [0, 0, 0, 1, 0]})
                for data_example in data:
                    self.assertListEqual([3, 12], list(data_example))
                self.assertListEqual([3, 3], list(lbls))

            coord.request_stop()
            coord.join(threads)
开发者ID:rhuangq,项目名称:tensorflow,代码行数:32,代码来源:sampling_ops_test.py


示例17: testGradientWithZeroWeight

  def testGradientWithZeroWeight(self):
    with tf.Graph().as_default():
      tf.set_random_seed(0)

      inputs = tf.ones((2, 3))
      weights = tf.get_variable('weights',
                                shape=[3, 4],
                                initializer=tf.truncated_normal_initializer())
      predictions = tf.matmul(inputs, weights)

      optimizer = tf.train.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
      loss = tf.contrib.losses.mean_pairwise_squared_error(
          predictions,
          predictions,
          0)

      gradients_to_variables = optimizer.compute_gradients(loss)

      init_op = tf.initialize_all_variables()

      with self.test_session() as sess:
        sess.run(init_op)
        for grad, _ in gradients_to_variables:
          np_grad = sess.run(grad)
          self.assertFalse(np.isnan(np_grad).any())
开发者ID:apollos,项目名称:tensorflow,代码行数:25,代码来源:loss_ops_test.py


示例18: _train_model

  def _train_model(self, checkpoint_dir, num_steps):
    """Trains a simple classification model.

    Note that the data has been configured such that after around 300 steps,
    the model has memorized the dataset (e.g. we can expect %100 accuracy).

    Args:
      checkpoint_dir: The directory where the checkpoint is written to.
      num_steps: The number of steps to train for.
    """
    with tf.Graph().as_default():
      tf.set_random_seed(0)
      tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
      tf_labels = tf.constant(self._labels, dtype=tf.float32)

      tf_predictions = logistic_classifier(tf_inputs)
      loss = tf.contrib.losses.log_loss(tf_predictions, tf_labels)

      optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0)
      train_op = tf.contrib.training.create_train_op(loss, optimizer)

      loss = tf.contrib.training.train(
          train_op, checkpoint_dir, hooks=[
              tf.train.StopAtStepHook(num_steps)
          ])
开发者ID:ComeOnGetMe,项目名称:tensorflow,代码行数:25,代码来源:evaluation_test.py


示例19: construct_graph

  def construct_graph(self, training, seed):
    """Returns a TensorflowGraph object."""
    graph = tf.Graph()

    # Lazily created by _get_shared_session().
    shared_session = None

    # Cache of TensorFlow scopes, to prevent '_1' appended scope names
    # when subclass-overridden methods use the same scopes.
    name_scopes = {}

    # Setup graph
    with graph.as_default():
      if seed is not None:
        tf.set_random_seed(seed)
      (output, labels, weights) = self.build(graph, name_scopes, training)

    if training:
      loss = self.add_training_cost(graph, name_scopes, output, labels, weights)
    else:
      loss = None
      output = self.add_output_ops(graph, output)  # add softmax heads
    return TensorflowGraph(
        graph=graph,
        session=shared_session,
        name_scopes=name_scopes,
        output=output,
        labels=labels,
        weights=weights,
        loss=loss)
开发者ID:joegomes,项目名称:deepchem,代码行数:30,代码来源:__init__.py


示例20: main

def main(_):
  # Fixed seed for repeatability
  seed = 8964
  tf.set_random_seed(seed)
  np.random.seed(seed)
  random.seed(seed)

  if FLAGS.legacy_mode and FLAGS.seq_length < 3:
    raise ValueError('Legacy mode supports sequence length > 2 only.')

  if not gfile.Exists(FLAGS.checkpoint_dir):
    gfile.MakeDirs(FLAGS.checkpoint_dir)

  train_model = model.Model(data_dir=FLAGS.data_dir,
                            is_training=True,
                            learning_rate=FLAGS.learning_rate,
                            beta1=FLAGS.beta1,
                            reconstr_weight=FLAGS.reconstr_weight,
                            smooth_weight=FLAGS.smooth_weight,
                            ssim_weight=FLAGS.ssim_weight,
                            icp_weight=FLAGS.icp_weight,
                            batch_size=FLAGS.batch_size,
                            img_height=FLAGS.img_height,
                            img_width=FLAGS.img_width,
                            seq_length=FLAGS.seq_length,
                            legacy_mode=FLAGS.legacy_mode)

  train(train_model, FLAGS.pretrained_ckpt, FLAGS.checkpoint_dir,
        FLAGS.train_steps, FLAGS.summary_freq)
开发者ID:ALISCIFP,项目名称:models,代码行数:29,代码来源:train.py



注:本文中的tensorflow.set_random_seed函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensorflow.shape函数代码示例发布时间:2022-05-27
下一篇:
Python tensorflow.sequence_mask函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap